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Three dimensional (3D) surface imaging has been an active area of research for

decades and has reached a stage of maturity, thanks to digital cameras and ever-

increasing computational power. Its utilization in science and technology is rapidly

growing due to its potentials in civil engineering, mapping, structural monitoring

and inspection, archaeology, and cultural heritage documentation, to name a few.

In this research we will focus on development of a 3D surface imaging technique

for applications in a special environment in civil engineering, i.e. underwater.

Some of the most important methods of 3D surface imaging are based on the

use of structured light. These techniques simplify the problem of 3D reconstruction

with the help of controlled illumination and can yield excellent results in practice.

They basically consist of acquiring 2D image(s) of the scene while illuminating

the scene with spatially varying intensity pattern(s). The nonplanar geometric

shape of the surface distorts the projected structured-light pattern as seen from

the camera. The principle of structured-light 3D surface imaging techniques is to

extract the 3D surface shape based on the information from the distortion of the

projected structured light pattern.
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In this dissertation, a new structured-light method for underwater 3D surface

imaging has been developed which can simultaneously estimate both the geometric

shape of the water surface and the geometric shape of underwater objects. The

method utilizes a projector outside of water and an underwater camera. It re-

quires only a single image and thus can be applied to dynamic as well as static

scenes. The proposed method is specifically applicable to 3D reconstruction for

structural monitoring in hazardous areas that are inaccessible to direct inspection.

Experimental results show the utility of this method in non-invasive underwater

3D reconstruction applications. The performance of the new method is studied

through a sensitivity analysis for different parameters of the suggested method.



www.manaraa.com

DEDICATION

To my parents, Khalil and Mahjan

iii



www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to my advisor, Dr. Brian

Haus for persevering throughout the time it took me to complete this research and

write the dissertation.

I am also grateful for all the good-natured support of Dr. Antonio Nanni, the

co-chair of my committee and the head of the CAE department.

The members of my dissertation committee, Dr. Kenneth Voss and Dr. James

Giancaspro, have generously given their time and expertise to improve my work.

I thank them for their constructive discussions and contributions.

My thanks must go also to Lizett M. Bowen and Maria L. Aldana, the secre-

taries of the CAE department for all their patience and help throughout my studies

at the University of Miami.

I would like to acknowledge Mike Rebozo for assisting me to set up all the

experiments in the lab. Without his expertise it would have been impossible for

me to collect data for my research.

I would also like to acknowledge Kristin Ponge for all the time, assistance and

support she gave me during my PhD.

iv



www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Different approaches for 3D reconstruction using visual information 6

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Water surface reconstruction . . . . . . . . . . . . . . . . . . . . 12

2.2 Object reconstruction using structured-light techniques . . . . . 18

3 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 System calibration . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Camera calibration . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Camera-Projector calibration . . . . . . . . . . . . . . . 38

3.3 Pseudocode pattern . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Water surface estimation . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Object reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Experiments and results . . . . . . . . . . . . . . . . . . . . . . 50

v



www.manaraa.com

Page

vi

4.1.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Sensitivity of the height of water surface . . . . . . . . . 72

4.2.2 Sensitivity of the slope of water surface . . . . . . . . . . 76

4.2.3 Sensitivity of the baseline . . . . . . . . . . . . . . . . . 80

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 85

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



www.manaraa.com

LIST OF TABLES

Table Page

1 System calibration results: Intrinsic and Extrinsic parameters
for both camera and the projector . . . . . . . . . . . . . . . . . 57

2 Estimated water surface parameters for seven images shown in
Figure 28(a) using a sinusoidal model Z = A sin(kX − φ) + B
for the water surface. . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



www.manaraa.com

LIST OF FIGURES

Figure Page

1 Imaging Slope Gauge setup at the University of Miami’s ASIST
lab used for the purpose of water surface estimation . . . . . . . 17

2 A typical scanner setup. A sheet of light sweeps across a surface
while a camera acquires the stripe reflection . . . . . . . . . . . 20

3 Binary pattern used in multi-shot structured light techniques
for 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Gray pattern used in multi-shot structured light techniques. It
uses several distinct levels of intensity (instead of only two in the
Binary pattern), to produce unique coding and reduces number
of required projection patterns. . . . . . . . . . . . . . . . . . . 22

5 Phase Shift used in multi-shot structured light techniques. A
set of sinusoidal patterns are projected. The variation form of
these projected fringe patterns are similar, except the phase of
the fringe patterns are shifted a constant angle with respect to
each other. The minimum number of projections is three. . . . . 23

6 Color Phase Shift used in single-shot structured light techniques 24

7 Stripe Indexing using segment pattern used in single-shot struc-
tured light techniques . . . . . . . . . . . . . . . . . . . . . . . 25

8 Stripe Indexing repeated gray level used in single-shot struc-
tured light techniques . . . . . . . . . . . . . . . . . . . . . . . 26

9 Color Stripe Indexing used in single-shot structured light tech-
niques. (left) an example of the projected stripe pattern, (right)
an image captured by the camera. . . . . . . . . . . . . . . . . . 27

10 Pseudo Random Binary Array (PRBA) used in single-shot struc-
tured light techniques . . . . . . . . . . . . . . . . . . . . . . . 28

11 Rainbow pattern with spatially varying wavelength illumination
used in single-shot structured light techniques . . . . . . . . . . 28

viii



www.manaraa.com

Figure Page

ix

12 Color coded grid by both vertical and horizontal stripes used in
single-shot structured light techniques . . . . . . . . . . . . . . 28

13 Psuedo Random Code is a 2D array of color-coded dots used in
single-shot structured light techniques . . . . . . . . . . . . . . 29

14 Illustration of a ray in a projector-camera system: (a) both
camera and the projector are in the same medium, (b) camera
and the projector are in different medium, in this particular case
the projector is above water and the camera is underwater. . . . 32

15 Illustration of the ray refraction after hitting water surface with
a (a) flat surface with Height =0.94(m), (b) flat surface with
Slope=0.24 and Intercept 1, (c) Sinusoidal water surface . . . . 34

16 Samples of camera calibration images . . . . . . . . . . . . . . . 36

17 Schematic view of the projector, camera and the calibration
plane. By changing the orientation of the calibration plane and
taking images of the plane by a pre-calibrated camera, the in-
trinsic parameters of the projector and the translation and the
rotation matrices of the camera with respect to projector can
be estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 Samples of projected checkerboard along with physical checker-
board at different orientations used for projector calibration . . 41

19 Generating pseudocode: (left) step by step pseudocode genera-
tion (right) example of a generated 50× 50 pseudocode . . . . . 42

20 Object coordinate system. Using a calibrated camera and a
checkerboard attached to the white board, the coordinates of
all dots of the psuedorandom code can be calculated. The Z
component of all these dots are equal to zero. . . . . . . . . . . 44

21 Two dimensional path of a light ray emitted from a projector
located above the water and captured by an underwater camera.
The ray refracts after hitting the water surface based on its
incidence angle θai . . . . . . . . . . . . . . . . . . . . . . . . . . 46

22 (a)Synthetic flat water surface of the form Zw
i = a1X

w
i +a2 and

the rays from the projector. The a1 and a2 were set to −0.07
and 1.16 (b) Corresponding cost function. . . . . . . . . . . . . 51



www.manaraa.com

Figure Page

x

23 Minimum value of the cost function for estimating a flat water
surface parameters while adding different levels of noise to the
actual coordinates of 11 rays shown in Figure 22(a). As the level
of noise in the input data increases, the minimum value of the
cost function increases. . . . . . . . . . . . . . . . . . . . . . . . 52

24 Cost function profiles for a synthetic Sinusoidal water surface of
the form Zw

i = 0.1 sin(5Xw
i −−π2 )+1. Cost function profiles for a

synthetic sinusoidal water surface of the form Zw
i = A sin(kXw

i −
φ) + B where A = 0.1, k = 5, φ = −π

2
, and B = 1. Each pro-

file represents a cross section of the four dimensional cost func-
tion along one parameter: (a)Amplitude A, (b)Wavenumber k,
(c)Phase φ, (d)Distance between the projector and the average
water surface B. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

25 (a) Image of the pseudocode pattern on a flat board under a flat
water surface (no wave), (b) Corresponding evaluation function
for F (Xw

i , a) = ax + b for different pairs of a and b with the
increment of 0.1, (c)Extracted pseudocode pattern. . . . . . . . 59

26 (a) Estimated water level differences in specific time intervals
while filling up the tank with fresh water at a constant rate, (b)
corresponding images of projected pseudocodes. . . . . . . . . . 60

27 (a) An image used for water surface reconstruction, the high-
lighted section shows that even under the effect of high curva-
ture waves, white flickers, the pseudocode can easily be detected,
(b) Reconstructed sinusoidal water surface, the object, and the
projector, (c)-(f) Cost function profiles for a wavy water surface
modeled as a sinusoidal function of the form Zw

i = A sin(kXw
i −

φ) + B. Each profile represents a cross section of the four di-
mensional cost function along one parameter: (c)Amplitude A,
(d)Wavenumber k, (e)Phase φ, (f)Distance between the projec-
tor and the average water surface B. . . . . . . . . . . . . . . . 62

28 (a)Seven consecutive images of a flat board and cylindrical ob-
ject at the presence of wavy water surface taken by an under-
water camera, (b) Reconstructed sinusoidal water surfaces for
each image with respect to the location of the projector and
the object, (c) Reconstructed water surfaces are highlighted for
better visual representation, (d) Reconstructed cylindrical ob-
ject attached to the board using combined data from all seven
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



www.manaraa.com

Figure Page

xi

29 (a)A spherical object attached to a board illuminated by a pseu-
docode pattern emitted from a projector located above water,
(b)White dots depict extracted pseudocode pattern on top of the
object, (c)Reconstructed spherical object attached to the board
using data from one single image. Note: bigger pseudocodes are
easier to extract under a wavy water surface. . . . . . . . . . . . 68

30 Absolute sensitivity function for reconstructed X (or Y ) coor-
dinates to the height of water surface. The function is plotted
for different values of βi and αi. . . . . . . . . . . . . . . . . . . 73

31 Relative sensitivity function for the reconstructed X or Y coor-
dinates to the height of water surface. The function is plotted
for different values of βi and αi. Plot of relative sensitivity for
the (a) same parameters as in our experimental setup, (b) same
parameters as in our experimental setup except the object is
at the depth equal to 5 meters, (c) same parameters as in our
experimental setup except the projector is closer to the water
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

32 Absolute sensitivity function for the reconstructed X (or Y )
coordinates to the slope of water surface. The sensitivity func-
tion is a function of slope itself. Absolute sensitivity for (a) our
experimental setup Zw

i = 1.24(m) and Zi = 1.4(m), (b) hypo-
thetical setup, Zw

i = 1(m) and deeper object Zi = 2(m), (c)
hypothetical setup, Zw

i = 1.5(m) and Zi = 2(m). . . . . . . . . 78

33 Relative sensitivity function for the reconstructed X (or Y ) co-
ordinates to the slope of water surface. Relative sensitivity for
(a) our experimental setup Zw

i = 1.24(m) and Zi = 1.4(m), (b)
hypothetical setup, Zw

i = 1(m) and deeper object Zi = 2(m),
(c) hypothetical setup, Zw

i = 1.5(m) and Zi = 2(m). . . . . . . 79

34 Absolute sensitivity function for estimated distance between the
camera and the object D to the baseline between the camera and
the projector B. Absolute sensitivity for (a) βi = 20 degree, (b)
βi = 0 degree (with no refraction), (c) βi = 30 degree (with
extreme refraction). βi is the difference between angles of inci-
dence and refraction. The absolute sensitivity function changes
for different values of ψc, ψp. . . . . . . . . . . . . . . . . . . . . 82



www.manaraa.com

Figure Page

xii

35 Relative sensitivity function for estimated distance between the
camera and the object D to the baseline between the camera
and the projector B. Relative sensitivity for (a) βi = 20 degree,
(b) βi = 0 degree (with no refraction), (c) βi = 30 degree (with
extreme refraction). βi is the difference between angles of inci-
dence and refraction. The relative sensitivity function changes
for different values of ψc, ψp. . . . . . . . . . . . . . . . . . . . . 83

36 Extension of the proposed method to the case where the camera
and the projector are outside water and the object is underwater. 92



www.manaraa.com

1

Introduction

1.1 Preface

Understanding the three-dimensional structure of surrounding objects is an

essential component in many civil engineering applications. Examples of these

applications include topographic mapping, Non Destructive Testing (NDT), nav-

igation, 3D virtual cities, and Geographical Information Systems (GIS), among

others.

Analysis of visual information is a powerful apparatus which enables engi-

neers to tackle the problem of understanding (reconstructing) the three dimensional

structure of objects. Humans along with a large number of animals mainly ”un-

derstand” the three-dimensional structure of the surrounding world through their

visual system. It is believed that this task is achieved by integrating a number

of visual cues (perspective deformation, stereo, shading, shadows, occluding con-

tours, (de)focus, texture, motion parallax, highlights) in conjunction with prior

knowledge about the scene. In many circumstances, even a single image of an

object is sufficient for humans to extract a good mental representation of its three-

dimensional shape.

Due to the richness of visual information, the problem of reconstructing

the three-dimensional structure of objects from a set of two-dimensional images

has always been of interest to researchers and professionals in civil engineering

[1, 2, 3, 4, 5].

1
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For example, for the purpose of topographic mapping, photogrammetric

techniques have been used for decades to derive three-dimensional data from stereo

images. Photogrammetric 3D reconstruction is a common practice specially in

large-scale mapping projects. Almost all of the national topographic maps are

produced from aerial or satellite images. 3D maps serve as the foundation for

applications such as 3D virtual cities, GIS, navigation, etc.

Non Destructive Testing (NDT) is another example of an application area

where obtaining 3D information from images is very common. NDT has been

defined as comprising those test methods used to examine an object, material

or system without impairing its future usefulness [1]. NDT embraces a variety

of methods, including visual testing, radiography, ultrasonic, liquid penetrant in-

spection, and thermography, to name a few. Visual testing is the first natural

choice for Non Destructive Testing, mainly due to its low cost, minimal equipment

requirements, massive amount of information in visual contents and the ability for

sampling to be performed while the subject is being used or processed. Visual

testing can refer to both human and machine operated visual testing. By applying

computer vision techniques such as 3D reconstruction, image segmentation and/or

classification, visual inspection can be implemented efficiently, automatically or

semi-automatically with certain interactive manipulations by the operator. Once

the images are taken, appropriate computer vision techniques can reveal potential

defects within the component under investigation.
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Optical imaging, as a tool for visual testing, has a number of advantages

including acquiring information of a component without direct contact and its

capability of instantaneous recording of two-dimensional images of the objects is

important for investigating dynamic behaviors of a component.

The limitations to visual testing include detection of only surface disconti-

nuities and high equipment costs of aids for some visual testing. In case of human

operated visual testing, other limitations such as poor or variable resolution of the

eye, fatigue of the inspector, and distractions will be added.

The above examples shed a light on how and why optical imaging and

computer vision technology became a standard aid in civil engineering and play an

important role in different applications in this area. In this research we will focus

on a special environment in civil engineering, i.e. underwater.

Civil engineers quite often deal with underwater environments such as

oceans, rivers, and lakes. For instance, the directions, heights and surface slopes

of three dimensional sea waves are highly important for the design of offshore and

nearshore structures, as well for the development of an understanding of momen-

tum, mass and heat transfer across the air sea interface [6, 7].

Also, underwater visual inspection is the integral part of monitoring un-

derwater structures or disaster management in oceans or seashores. Some recent

examples in this regard include two recent major disasters, i.e. :

• The reactors in Japans nuclear power plant in 2011 were flooded with sea-

water (an extremely hazardous area that required minimal human exposure).
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• British Petroleum oil spill in the golf of Mexico 2010 (5000 feet below the

surface of the water in almost absolute darkness). Visual estimation of

petroleum outfall was an important component of understanding the extent

of the problem.

In both of above-mentioned disasters, Remotely Operated Vehicles (ROV) and/or

Autonomous Underwater Vehicles (AUV) equipped with optical cameras were de-

ployed for large scale and long term data collection tasks. Since these systems

could be deployed in such hazardous environments without risking human divers,

they played an essential role in structural monitoring and disaster management

operations.

Furthermore, 3D information can be very helpful in managing underwater

environments and plays a crucial role in watershed management and coral reef

conservation. According to the Global Coral Reef Monitoring Network in 2008, the

world has lost 19% of the original coral cover and 15% of the worlds reefs are under

short term threat of major losses in 10 to 20 years. In 2011, the World Resources

Institute factored climate change into their predictions to state that more than

60% of the worlds reefs are under immediate threat of direct human pressures and

this will rise to 95% by 2050 [8]. This effect is mainly due to damaging activities by

humans in watershed areas, combined with over-fishing and global climate change.

Good quality 3D maps are key components of GIS technology for monitoring these
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precious coastal ecosystems. It is highly important to obtain 3D information with

minimum disturbance of these environments and optical imaging can play a key

role in collecting accurate 3D information for this purpose.

Another emerging application of optical sensors and vision systems is under-

water security and surveillance. A video camera mounted on an underwater vehicle

provides lots of information that can be examined for effective path planning and

navigations as well as object detection and classification. Also, video cameras

are high resolution sensors and are invaluable in situations that require accurate

measurements at short ranges. Governments and private security and surveillance

agencies are interested in using optical cameras for the purpose of underwater

mine detection, harbor patrol, counter-surveillance, and anti-terrorism. They are

required to continuously protect ports, offshore oil platforms, coastal energy ter-

minals, high value vessels, naval bases, energy installations, and VIP compounds

around the world against underwater intrusion and sabotage. With image-based

systems, security personnel can view underwater structures for abnormal changes

in conditions or be on the lookout for sabotage or terrorist interference.

Finally, recent advances in photogrammetry and computer vision, mainly

in automatic matching and dense map generation, will change archaeological ex-

cavations that are often irreversibly destructive. Since underwater sites can never

be experienced firsthand by the majority of archaeologists or the general public,

it is crucial to provide a faithful and accurate 3D map and detailed documenta-

tion of such a site which can provide virtual access to all archaeological data. As
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soon as appropriate tools for underwater photography became available, a trend

towards obtaining 3D maps of underwater sites using optical imaging also devel-

oped. Using optical imaging and photogrammetric techniques, archaeologists are

now able to obtain accurate 2D or 3D representations of underwater sites and ship

wrecks. Mapping, archaeological surveys, and more generally, surveys dedicated to

cultural heritage are an interpretation of the real world and underwater imaging

is an intrinsic part of these tasks.

1.2 Different approaches for 3D reconstruction using visual informa-
tion

Given the capabilities embedded in visual information and the ever-increasing

demand for 3D reconstruction from images, it is highly desirable to design a system

that would replicate the function of the human visual system. This ideal artificial

system would be able to automatically extract the three-dimensional geometry of

the objects using only the information contained in a set of 2D pictures of objects.

For the purpose of civil engineering, in most cases the 3D reconstructed geometry

should even be more accurate than human perceptual understanding of the 3D

world. Although, we are still far from such an ideal system, tremendous research

efforts have been conducted in this regard. These research efforts resulted in sev-

eral different solutions. Existing Image-based 3D reconstruction systems can be

categorized into two categories: passive and active.

Passive systems use only images acquired in natural (unstructured) light

for computing 3D geometry. They employ different cues that contain information
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about 3D shape such as stereoscopic disparity, texture, motion parallax, (de)focus,

shadows, shading, specularities, occluding contours and other surface discontinu-

ities [4, 9, 10, 11, 12, 13, 14, 15, 3]. Among these cues, stereoscopic disparity

reliably gives reasonable accuracy. However, its main drawback is that it can not

be used on untextured surfaces.

A single moving camera can substitute for the pair of cameras in stere-

oscopy. This is the case that commonly happens in conventional photogrammetric

mapping using aerial photos. The camera takes two (or more) snapshots of the

world from different locations in space at two (or more) different instants in time.

The reconstruction procedure is then identical to traditional stereo scenarios: the

structure of the world is triangulated using the two camera images used as a stereo

pair. The main advantage of these methods is that the camera can be moved

freely by the user in the scene and hence is more ergonomic. There exists, how-

ever, two major limitations of such an approach [16]: First, in order to perform

geometrical triangulation, one should determine the motion disparity between the

two camera positions. Second, since the two pictures are taken at different times,

the objects and optical transmission properties must remain rigid between those

two acquisition times.

In contrast to passive systems, active systems use an external projecting

device to illuminate the scene. They employ a combination of imaging devices (one

or more cameras) and lighting devices (laser/LCD projectors) calibrated one with

respect to each other. The principle of their underlying methods is quite intuitive:



www.manaraa.com

8

the projector emits light patterns (structured lights) that are reflected by the

scene and detected on the image acquired by the camera. The three-dimensional

structure of the scene is then computed by geometrical triangulation. Aside from

being quite intensive to variations in texture within the scenes, these technologies

have the advantage of yielding very good accuracies (errors in reconstruction can

be as small as a part in one or two thousand).

A variety of such active systems (structured light techniques) have been

developed for applications in the underwater environment (or participating media

in general). They range from using thin laser beams [17], to using a number

of carefully spaced confocal sources [18], to more sophisticated time-gated [19]

and synchronization-gated techniques [20]. An implicit assumption made in these

systems is that they are immersed in a clear medium and therefore the light is

neither scattered nor absorbed by the medium in which the scene and sources are

immersed.

Contrary to the above methods, Narasimhan et.al [21] introduced an ana-

lytic image formation model that is based on the physics of single scattering. The

model describes the interactions of structured light with the medium and the scene.

Using the image formation model for light striping, they developed an algorithm

to detect objects and obtain a 3D reconstruction of the scene in the presence of

single scattering.
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1.3 Objective

In all of the above-mentioned structured light techniques, the assumption

is that the projector and the camera are in the same (homogeneous) medium, e.g.

both camera and projector are placed underwater or in an open-air environment.

However, there are applications that need the projector and the camera to be

in different mediums. For example, consider air-sea interface studies that need

simultaneous estimation of the water surface and sea floor in shallow waters.

In the context of this dissertation, we mainly focus on the problem of esti-

mating the 3D geometry using active lighting in underwater environments. With

that specific goal in mind, we will present a technique for estimating the 3D shape

of underwater objects as well as the water surface. Specifically, we seek to develop

a structured-light technique that employs a projector above water and a camera lo-

cated under water to estimate both the water surface elevation and the topography

of the sea floor. In this case, the water surface is dynamic and changes instanta-

neously. Because it must deal with a dynamic surface, the method has to use a

single image. For this purpose, we project a unique bi-dimensional pseudorandom

color pattern from the projector that encodes positions as spatially distributed

codes. In this pseudorandom code, any subset (or window) is unique and defines

a specific location. Each code is composed of a 3x3 neighborhood of square color

patches that ensures simplicity in the pattern generation and reduces the ambiguity

in the color recognition.
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An optical camera is used to acquire a single image of the underwater

scene illuminated by the structured-light (pseudocode) pattern. The 3D surface

shape of the water surface and underwater objects will be estimated based on the

information from the distortion of the projected pattern.

We assume that the water is clear and the scattering effect is negligible.

Therefore, the method is suitable for pure sea water and/or a clear ocean (see

[22] for definition of different water types). If the scattering effect dominates the

absorption, the method still can be used but the scattering effect needs to be

removed initially from the images.

1.4 Outline

The manuscript is organized in the following chapters.

Chapter 2 reviews major image based techniques for water surface recon-

struction. In addition this chapter provides a review of recent advances in non-

contact 3D surface measurement techniques based on structured light. It is beyond

the scope of this dissertation to cover all possible 3D surface imaging techniques.

Instead, we have selected representative techniques in order to understand funda-

mental technical principles and typical system characteristics.

Chapter 3 describes the proposed system for underwater object reconstruc-

tion based on a structured light technique. We introduce the fundamental notation

used in this dissertation. This is followed by a description of the camera-projector

calibration procedure which is critical to the successful operation of any structured-

light 3D surface imaging system. In this chapter we also introduce a new simple
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mathematical formalism that enables us to explore and compute geometrical prop-

erties of three-dimensional scenes. The main contribution of this work is a new

parametrization of underwater object reconstruction with minimum contact with

water that leads to a set of useful properties.

Chapter 4 presents the results of several laboratory experiments used to

define the ability and the effectiveness of the proposed method in both synthetic

and real scenarios. The experiments were conducted with wavy and flat water

surfaces. Both planar and non-planar objects were reconstructed to assess the

performance of our method.

Finally, in chapter 5 we conclude, and discuss some directions for future

developments.
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Previous Works

Three-dimensional surface reconstruction deals with measurement of the

x,y,z coordinates of points on the surface of an object. The result of the measure-

ment may be regarded as a map of the depth z as a function of the position x, y

in a Cartesian coordinate system. Applications of 3D surface reconstruction range

from traditional mapping, structural monitoring, cultural heritage documentation,

quantifying landform change to forensic, medical, biology and many other fields.

Three dimensional surface imaging has been an active area of research for

decades and has reached a stage of maturity, thanks to digital cameras and ever-

increasing computational power. We will discuss optical imaging techniques that

have been developed for both sea surface reconstruction and underwater object 3D

reconstruction using structured-light techniques.

2.1 Water surface reconstruction

Under the assumption of statistical stationarity or homogeneity, various

temporal or spatial methods have been proposed to recover shape information of

water surface waves. These methods are generally applied to time series obtained

at a chosen location. Among the methods in common use are: the Direct Fourier

Component method [23]; the Maximum Likelihood method [24, 25]; the Maximum

Entropy method [26] and a method based on Wavelet transforms [27]. Time series

observations generally obtained using Heave-Pitch-Roll buoys or its more recent

12
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successor, the three axis accelerometer buoy, three component current meters, GPS

sensors or gauges. All of these techniques are single point observations and can

not reveal the instantaneous 2D structure of the surface. Arrays of point gauges

or scanning lasers can provide such information but require significant structures

that may disturb the surface. An alternative to these approaches is to use optical

techniques.

It has long been recognized that optical techniques are useful for the mea-

surement of water surface slopes. Cox et. al. in [28] used the sun as a light source

to measure the surface wave spectrum through the specular reflection observed

in airborne photographic images. An innovative approach to laboratory measure-

ments was developed by Cox [29]. He illuminated a wedge with varying thickness

from the bottom in the laboratory. The light that passed through this wedge was

observed by a phototube. The refraction of the light through the surface then

caused the intensity of observed light to be proportional to the surface slope. By

changing the orientation of the wedge, both along-tank and cross-tank slopes could

be observed. Hughes et al. [30] developed a laser point slope technique that used a

camera to record the refracted position of a laser beam passing through the surface.

A lens was used to eliminate the effects of wave height variation.

Two-dimensional slope measurements were obtained by Keller and Gotwol

in [31] and Jähne and Riemer in [32] using a single camera located above the surface

and a one dimensional graduated light source located below the surface.The authors

in [31] used a light source through a colloidal suspension to generate an exponential
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gradient of light intensity in a single axis. A camera was used to record images of

this slope component at a rate of 60 Hz. After the light passed through the water

surface, it passed through a compensation wedge to linearize the intensity gradient.

The authors in [32] used rows of lamps positioned underneath the Delft wind-wave

facility. The light shone through an aqueous suspension of latex particles which

provided a light intensity gradient in either the along-tank or cross-tank direction

depending on which lamps were illuminated. The light gradient was imaged by a

camera after passing through the air-water interface. The instantaneous surface

slopes in the direction of the light gradient were then inferred from the observed

image grey levels, and temporal resolution was achieved by analyzing an image

sequence. The advantage of these light gradient methods is that the data analysis

is simple and can be performed in real time and the techniques can be readily

extended to two spatial dimensions.

Shemdin et al. in [33] used stereo photography to observe the two-dimensional

wavenumber spectrum of short gravity waves in the field from a tower. In another

approach, Waas et al. [34] made combined slope-height measurements using a

Reflective Stereo Slope Gauge. This instrument consists of a pair of point-light

sources and video cameras housed in a single package suspended over the surface.

Linear polarization filters are placed in front of the lights and cameras so that

only specular reflections from the left light are imaged by the right camera, and

only specular reflections from the right light are imaged by the left camera. The

apparent displacement of specular reflections between the left and right images
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(parallax) are proportional to the elevation of the surface facet where the reflec-

tion occurred. By computing the parallax for all specular reflections, the position

and slope of specular points on the surface are found.

In another approach, Bock and Hara [35], Martinsen and Bock [36], and Lee

et al. [37] employed a scanning laser slope gauge in which a scanning laser beam

is located below the surface, and a receiver is located above the surface. Then,

by recording the instantaneous position of the transmitted and received beams,

a two-dimensional slope map of the surface is reconstructed. These instruments

have been successfully deployed in the laboratory and field, and are capable of

recovering significant statistical information about dynamics of the ocean surface.

To design a system capable of recovering instantaneous joint elevation-slope

maps, while not disturbing the air-surface interface, a variety of passive image anal-

ysis techniques were investigated. At the air-sea boundary, light rays are reflected

back into the atmosphere or refracted into the water volume, and multiple reflec-

tions and scattering at the surface can be neglected. At this level, a water surface

displays specular reflectance properties. Consequently, the water surface acts like

a partially silvered mirror that reflects the sky brightness into the camera. Most

image analysis techniques designed to recover shape information from images (fea-

ture matching, photometric stereo, and shape-from-shading) assume Lambertian

surface reflectance properties. For a Lambertian type surfaces, the apparent bright-

ness of a surface point is strongly dependent on the position of the light source

relative to the surface, and weakly dependent on the position of the observer. Fea-
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ture matching algorithms take advantage of this reflectance property by assuming

that small surface features can be identified in images taken from different positions

[15, 9]. Similarly, photometric stereo techniques [15, 38] and shape-from-shading

algorithms [11, 10] assume that the pixel brightness depends only on the position

of the light source relative to the surface. Several researchers have extended the

photometric stereo technique to specular surfaces [12, 39, 13, 40]. These meth-

ods, however, require a single camera viewing a stationary surface illuminated

by a sequence of extended light sources. Shape-from-specularity techniques [14]

have successfully recovered shape information from specular surfaces by analyzing

the reflections produced by a small number of point light sources [12, 41, 42, 43].

These methods cannot be extended to natural lighting conditions because it is not

possible to isolate an individual specular reflection.

An optical flow technique [44] has been employed to recover the instanta-

neous shape of a water surface by analyzing the apparent motion of a submerged

pattern. This technique is limited, however, to gradually undulating surfaces where

the maximum slope does not exceed 5”. Because of these restrictions, none of the

above methods can be readily adapted to recovering the shape of a moving specular

surface (such as water waves) under natural lighting conditions.

Schultz in [2] adapted the multiple image shape-from-shading technique

introduced in [45, 11] to recover the fine scale structure of the ocean surface. In

this method, known as Specular Surface Stereo, the surface shape is recovered by

solving the inverse problem of finding a surface shape (defined by an elevation
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and gradient map) that results in a set of synthetic images that closely match a

set of observed images. To accomplish this, the algorithm requires an image of

the illumination source, three images of the water surface, a few initial elevation

estimates, and an image synthesis model that predicts the appearance of an image

of the surface.
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Figure 1: Imaging Slope Gauge setup at the University of Miami’s ASIST lab used for
the purpose of water surface estimation

Finally, the imaging slope gauge used by Haus et. al. in [46] follows the

design of Jähne and Riemer [32], in which an area on the floor beneath a laboratory

tank is illuminated with blue and green light having intensity gradients down and
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cross-tank respectively. In place of a light box and screen lying beneath the tank, a

digital image of known color gradients is projected onto a flat-white painted acrylic

sheet below the wave tank. A projector is used to provide carefully controlled

gradients. The camera peers down at the image area with a 0 nadir angle. A

Fresnel lens is installed just beneath the tank and above the illuminated area

alleviating the need for tedious surface elevation measurements. Figure 1 shows

the setup used in this method. One advantage of this approach is that the image

observed by the camera can be easily analyzed for linearity and range of color

gradients. If the observed image does not meet the experimental requirements for

the color mask, the projected image can be digitally adjusted to provide desired

color gradients and range in the observed mask.

2.2 Object reconstruction using structured-light techniques

Some of the most important methods of 3D surface imaging are based on the

use of structured light. These techniques simplify the problem of 3D reconstruction

with the help of controlled illumination and can yield excellent results in practice.

They basically consist of acquiring 2D image(s) of the scene while illuminating

the scene with spatially varying intensity pattern(s). The nonplanar geometric

shape of the surface distorts the projected structured-light pattern as seen from

the camera. The principle of structured-light 3D surface imaging techniques is to

extract the 3D surface shape based on the information from the distortion of the

projected structured-light pattern.
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A large number of structured light techniques for 3D surface imaging have

been developed so far. These techniques can be classified into two categories:

those that require multiple images (multi-shot techniques) [47, 48, 49, 50] and

those that require only a single image (single-shot techniques) [51, 52, 53, 54, 55] to

reconstruct a surface. The single-shot techniques can further be classified into three

broad categories: techniques using continuously varying structured-light patterns

[51, 56, 52, 57], techniques using 1D encoding schemes (strip indexing) [58, 54, 55],

and techniques using 2D encoding schemes (grid indexing) [59, 53, 60].

Generally, multiple-shot techniques may often result in more reliable and a

more accurate 3D reconstructed surface. Because of this, if the target is static, the

multiple-shot techniques are recommended. However, if the target is moving, using

single-shot techniques is required. In our case, since we are dealing with moving

objects (dynamic water surface), the single-shot techniques are of more interest.

The key difference between all these techniques is the structure of the il-

luminant (which could typically be a point, a stripe, multi-point, or multi-stripe)

that differentiates a single projected light spot from the acquired image(s). Each

technique has its own advantages and disadvantages, depending on the specific

applications. Here, we discuss several representative techniques, but by no means

all techniques, along that continuum.

The very basic methodology is to employ scanners that sweep across the

surface (see Figure 2). A plane of light sweeps across a surface while a camera ac-

quires the stripe reflection and triangulates to the light plane, scanline by scanline.
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Figure 2: A typical scanner setup. A sheet of light sweeps across a surface while a
camera acquires the stripe reflection

Rioux et al. [61] employed a flying spot and linear sensor array. Kanade et al. [62]

swept a light plane and recorded the time at which a peak is observed at each sen-

sor pixel. This time is then used to triangulate the sensor line of sight back to the

position of the stripe at that time. Curless and Levoy [63] generalize this temporal

analysis (calling it spacetime analysis) to other scanner configurations and observe

that it substantially increases immunity to shape and reflectance variations which

affect purely spatial analyses. While the Kanade method and the Rioux method

[64] can achieve high frame rates, both require highly customized hardware.

The binary coding [65, 47, 48, 49, 66] uses black and white stripes to form a

sequence of projection patterns, such that each point on the surface of the object
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Figure 3: Binary pattern used in multi-shot structured light techniques for 3D recon-
struction

possesses a unique binary code that differs from any other codes of different points.

In general, N patterns can code 2N stripes. Figure 3 shows four example patterns

which can be used in binary coding method. Once this sequence of patterns is

projected onto a static scene, there are 2N unique areas coded with unique stripes.

The 3D coordinates x, y, z can be computed (based on a triangulation principle)

for all 2N points along each horizontal line, thus forming a full frame of the 3D

image. Binary coding technique is very reliable and less sensitive to the surface

characteristics, since only binary values exist in all pixels. However, to achieve

high spatial resolution, a large number of sequential patterns need to be projected.

All objects in the scene have to remain static. The entire duration of 3D image

acquisition may be longer than a practical 3D application allows for.
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Figure 4: Gray pattern used in multi-shot structured light techniques. It uses several
distinct levels of intensity (instead of only two in the Binary pattern), to produce unique
coding and reduces number of required projection patterns.

In the direction of using fewer images, gray-level patterns are developed.

For example, one can use M distinct levels of intensity (instead of only two in

the binary code) to produce unique coding of the projection patterns. Figure 4

illustrates a gray pattern with 3 distinct level of intensity; white, gray, and black.

In this case, N patterns can code M×N stripes. Each stripe code can be visualized

as a point in an N -based space, and each dimension has M distinct values [67].

For example, if N = 3, and M is 4, then the total number of unique code stripes is

64 = 43. In comparison, for 64 stripes with a binary code, 6 patterns are needed.

Caspi et al. [68] reduce the number of images further by using a color generalization

of Gray codes. Finally, Hattori and Sato [69] refine the original hierarchical stripe

technique by introducing sub-pixel offsets to the final stripe pattern to get finer

resolution. Their approach is similar to spacetime analysis and uses log(N) stripes

plus m shifted versions of the finest stripes.
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Figure 5: Phase Shift used in multi-shot structured light techniques. A set of sinusoidal
patterns are projected. The variation form of these projected fringe patterns are similar,
except the phase of the fringe patterns are shifted a constant angle with respect to each
other. The minimum number of projections is three.

Another methodology under multiple-shot category is Phase-shift. It is a

well-known fringe projection method for 3D surface imaging [50]. A set of sinu-

soidal patterns is projected onto the object surface. The intensities for each pixel

(x, y) of the three projected fringe patterns will be recorded. The phase informa-

tion ϕ(x, y) can be retrieved (i.e., unwrapped) from the intensities in the three

fringe patterns. Phase unwrapping is the process that converts the wrapped phase

to the absolute phase. The 3D (x, y, z) coordinates can be calculated based on the
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Figure 6: Color Phase Shift used in single-shot structured light techniques

difference between measured phase ϕ(x, y) and the phase value from a reference

plane [70]. Figure 5 shows a standard light pattern for the Phase Shift method

and Figure 6 shows a color pattern used in an extension of this method.

Hall-Holt and Rusinkiewicz [71] describe a method that consists of projected

stripe patterns that vary over time and are based on coding the boundaries between

projected stripes. By finding the nearest stripe patterns over time, a unique code

can be determined for any stripe at any time. The constraint in this case is that the

object should be rigid and move slowly to avoid erroneous temporal correlations.

Major drawbacks of the multiple-shot techniques include their inability to

acquire the 3D scenes in dynamic motion. The last set of techniques we describe

are those that take advantage of color information or a unique encoding scheme in

the projection pattern and require only one acquired image of the object under the

color pattern illumination to derive the full frame of the 3D image with (x, y, z)

coordinates of each visible point in the scene.

To obtain 3D data by projecting one pattern and a single image, one can

use stripe indexing techniques [55],[72],[73]. In order to distinguish one stripe from
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others, randomly distributed cuts can be used to identify each stripe. This way,

each stripe is divided into many small line segments (see Figure 7). Then, segment

matching can be performed between the image and the pattern to obtain 3D data

[55]. However, this only applies to a 3D object with a smooth and continuous

surface when the pattern distortion due to surface shape is not severe. Otherwise,

it may be very difficult to recover the unique segment pattern and will result

in false matches. One solution to reduce the number of false matches is to use

adjacency relations among segments and segment pairs whose adjacent segments

also correspond with each other are extracted and considered to be correct matches.

Then, from the resultant matches, the correspondence can be propagated to get

an entire 3D reconstructed object.

Figure 7: Stripe Indexing using segment pattern used in single-shot structured light
techniques

Durdle et al. in [72] introduced another stripe indexing approach that

utilizes more than two intensity levels. They arrange the intensity levels of stripes

such that any group of stripes has unique intensity pattern within a period of length

(See Figure 8). This approach, however, might not be categorized in single shot



www.manaraa.com

26

techniques since it uses two stereo cameras and a projector for 3D reconstruction.

Figure 8: Stripe Indexing repeated gray level used in single-shot structured light tech-
niques

Zhang et al. [73] presented a color structured light pattern for recovering

object shape that can be used in both single-shot and multiple-shot approaches.

They used De Brujin sequence [74] in order to create unique stripes. Figure 9

shows their stripe pattern and an example image captured by their camera. In

the De Brujin sequence, no subsequence is correlated to any other. This unique

feature can be used in constructing a stripe pattern sequence that has unique

local variation patterns that do not repeat themselves. Such uniqueness makes

the pattern decoding an easier task. Unlike the method in [72], they are using

one camera. In order to resolve the vertical ambiguity in finding correspondences,

they rectify the image and the projected pattern so that the displacements are

purely horizontal and therefore, the search space for finding correspondences is

one dimensional.

Proesmans et al. [75, 76] demonstrate a scanner which projects a grid

pattern onto the scene and matches the observed grid to the projected pattern by
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Figure 9: Color Stripe Indexing used in single-shot structured light techniques. (left)
an example of the projected stripe pattern, (right) an image captured by the camera.

a global 2D grid optimization algorithm. In this case, the constraint is that the

visible portion of the object consist of a single connected component. Boyer and

Kak [77]project a color stripe pattern in which each window of spatially adjacent

stripes has a unique color intensity configuration. Davies and Nixon [78] propose a

color dot pattern with a similar spatial neighborhood property. In both cases, local

neighborhoods must exhibit enough spatial coherence to preserve the windows.

Lavoie et al. [79] encode pseudo-random grids as bi-dimensional binary arrays

(PRBA) composed of sequences in which any subset (or window) is unique and

defines a specific location (See Figure 10).

Finally, Chen et al. [80] describe a stereo vision method that also uses pro-

jected color stripes, but solves correspondences between edges in the two cameras

through dynamic programming, thus obtaining a global optimum. The constraint

in this case is surface monotonicity between the cameras. Each of the color pattern

methods above has the additional constraint that the surface does not change the

reflected color too much, e.g., doesn’t cause a color channel to drop out completely.
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Figure 10: Pseudo Random Binary Array (PRBA) used in single-shot structured light
techniques

Figure 11: Rainbow pattern with spatially varying wavelength illumination used in
single-shot structured light techniques

Figure 12: Color coded grid by both vertical and horizontal stripes used in single-shot
structured light techniques
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Figure 13: Psuedo Random Code is a 2D array of color-coded dots used in single-shot
structured light techniques

Although the single-shot techniques are useful for achieving large spatial

resolution, these techniques present their own drawbacks. The limited bandwidth

of the projectors provokes integration of intensities over adjacent pixels. In addi-

tion, light intensities vary due to the different colors and depths of the measuring

surface. Also, the error quantization introduced by the camera adds more diffi-

culties to the color identification. Therefore, the correct identification of every

projected intensity or color is not easy to achieve. To overcome these difficulties,

in most cases, such techniques use devices that project a unique wavelength for

every grey level or color along with cameras with large depth-per-pixel (about 11

bits per pixel) for accurate quantization.

Note that there are many ways to improve the performance of a 3D surface

imaging system by combining more than one encoding scheme. Examples of these

methods can be found in [81]. Also, due to the complexities in the essence of
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image-based 3D reconstruction problem, a large number of techniques have been

developed to date and each technique has its own set of advantages and disad-

vantages. In order to select a technique that can be applied to a specific applica-

tion, one should ponder the application requirements and choose the method that

matches those requirements based on indexes such as accuracy, resolution, speed,

cost, and reliability.
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Proposed System

3.1 Problem statement

Consider a typical structured-light system that both camera and the pro-

jector are in the same medium, see Figure 14(a). A spatially varying structured

illumination is generated by a projector or a light source modulated by a spa-

tial light modulator. An imaging sensor (a video camera, for example) is used to

acquire a 2D image of the scene under the structured-light illumination. If the

scene is a planar surface without any 3D surface variation, the pattern shown in

the acquired image is similar to that of the projected structured-light pattern.

However, when the surface in the scene is nonplanar, the geometric shape of the

surface distorts the projected structured-light pattern as seen from the camera.

The principle of structured-light 3D surface imaging techniques is to extract the

3D surface shape based on the information from the distortion of the projected

structured-light pattern.

As shown in Figure 14(a) , the geometric relationship between an imaging

sensor, a structured-light projector, and an object surface point can be expressed

by the triangulation principle as

D = B
sin(ψp)

sin(ψc + ψp)
(1)

Now consider the scene in Figure 14(b) where the projector is located above

water and the camera is under water. In this case, the distortion of the pattern is

31
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Figure 14: Illustration of a ray in a projector-camera system: (a) both camera and the
projector are in the same medium, (b) camera and the projector are in different medium,
in this particular case the projector is above water and the camera is underwater.
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due to both the geometric shape of the water surface and the geometric shape of

the object surface. To recover the object surface, one should consider distortions

from the water surface.

To demonstrate the effect of water surface shape on the projected pattern,

consider the scene in Figure 15 where a projector illuminates an underwater flat

object while its line of sight is perpendicular to the object’s surface. These plots

show the effect of refraction of the projected rays when they enter the water. Figure

15(a), (b), and (c) illustrate the behavior of the rays against a flat, sloped, and

sinusoidal water surfaces, respectively. As can be seen, each ray has a different

refraction behavior based on its incidence angle. When a light ray passes through

the water surface, the Snell’s law can describe the relationship between the angles

of incidence and refraction of that ray, i.e.

nw sin(θwi ) = na sin(θai ) (2)

where na represents the refractive index of the air and nw is the refractive index

of the water. Also, θai and θwi respectively represent the incidence angle and the

refraction angle of the ith ray.

Because of the refraction effect, a unique projected pattern will have differ-

ent shapes, even on a flat object at the same distance from the projector, depending

on the water surface shape. If one can estimate the water surface, then it is possible

to predict the path of each projected ray and account for the refraction effect on

the distortion of the projected pattern on the underwater object. We will discuss

how to estimate water surface in section 3.4.
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Figure 15: Illustration of the ray refraction after hitting water surface with a (a) flat
surface with Height =0.94(m), (b) flat surface with Slope=0.24 and Intercept 1, (c)
Sinusoidal water surface
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In order to estimate the geometric shape of the water surface and under-

water objects, we first need to calibrate the camera-projector system. In the next

section, we will explain the details of the camera-projector (system) calibration.

3.2 System calibration

Calibration is an essential part of a camera-projector system which involves

intrinsic calibration of both camera and the projector along with extrinsic calibra-

tion of camera -projector. The accuracy of calibration step plays a critical role

in measurement accuracy of camera-projector system. Camera calibration is the

first step in the system calibration which can be done by taking several images of

a checkerboard pattern at different angles.

3.2.1 Camera calibration

Camera calibration is a well-known problem in computer vision. It estab-

lishes the relationship between a pixel on a 2D image (in camera coordinates)

and a straight line in 3D space (world coordinates) along which the object point

is located, taking lens distortion into consideration. Usually, a pinhole camera

model and a set of intrinsic parameters are used to characterize the relationships.

Several approaches are proposed and their accompanying toolboxes are available

[82, 83, 84]. The most common approach is proposed by Zhang [83] and im-

plemented by Jean-Yves Bouguet [85]. It requires images at several angles and

distances of a known calibration object. A planar checkerboard pattern is used as

the calibration object because it is very simple to produce, can be printed with a

standard printer, and has distinctive corners that are easy to detect. An example
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Figure 16: Samples of camera calibration images

image involving such a pattern is shown in Figure 16. From the images of the

calibration pattern 2D to 3D correspondences are constructed.

The intrinsic parameters in this approach are:

Focal length: this approach returns two focal lengths that are expressed in

units of horizontal and vertical pixels. Both focal lengths are usually very similar.

Their ratio, often called ”aspect ratio”, is different from 1 if the pixels in the CCD

array are not square. Therefore, the camera model naturally handles non-square

pixels.

Principal point: the intersection of optical axis and the image plane.

Skew coefficient: This coefficient encodes the angle between the x and y

sensor axes. Consequently, pixels are even allowed to be non-rectangular. Some

authors refer to that type of model as ”affine distortion” model.

Distortions: the image distortion coefficients. The geometric relationship
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modeled in the Eq.(1) accounts for images which are not influenced by lens dis-

tortions. In practice lens distortions are inevitable and must be corrected. The

distortion model used in this approach was first introduced by Brown [5] and is

called the ”Plumb Bob” model. For more details, refer to [5].

Assume the plane of the planar calibration board in world coordinates to

be Z = 0, then each point on the calibration board becomes M = [X, Y, 0, 1]T.

Therefore, an object point M and its image point m are related by a homographic

matrix H [83],[81]:

m ∼ K[r1, r2, r3,−Rt][X, Y, 0, 1]T (3)

m ∼ H[X, Y, 1]T (4)

where H = [h1, h2, h3] = K[r1, r2,−Rt] is a 3×3 matrix defined up to scale,

and r1, r2, r3 are 3 × 1 column vectors of the rotation matrix. Noticing that for

rotation matrix R the column vector r1, r2, r3 is orthonormal, we therefore have

hT1 (KKT)−1hT2 = 0 (5)

hT1 (KKT)−1hT1 = hT2 (KKT)−1hT2 (6)

Each homography can provide two constraints on the intrinsic parameters.

As K−TK−1 in the Eq.(6) is a symmetry matrix, it can be defined with a 6D

vector:

A−K−TK−1 =


A1 A2 A4

A2 A3 A5

A4 A5 A6

 (7)
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Let the ith column vector of H be hi = [hi1, hi2, hi3]. Then, we have

hTi Ahj = vija (8)

where

vij =



hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


and

a = [A1, A2, A3, A4, A5, A6]

The two constraints can then be rewritten as a homogeneous equation. In

order to solve a, at least three images from different viewpoints are needed. In

practice, more images are used to reduce the effect of noise, and a least-squares

error solution is obtained with singular value decomposition. Finally, the result can

be optimized to minimize the reprojection error by minimizing the energy function

below:

m∑
i=1

n∑
j=1

||mij − m̄(K,R, t,Mj)||2 (9)

3.2.2 Camera-Projector calibration

The only difference between the optical model of a projector and a camera

is their direction of projection. Thus, a projector can be considered as an inverse

camera. It can be calibrated using camera calibration algorithms if the correspon-

dence between projector and the world coordinate system is established. However,
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the inverse model makes the problem of relating a pixel on a 2D image (in pro-

jector coordinates) with a straight line in 3D space (world coordinates) difficult,

as we cannot tell where a given point in 3D space will be projected in the inverse

camera coordinates.

To overcome this difficulty, a pre-calibrated camera and a calibration plane

(in this case checkerboard) can assist. If a calibrated camera observes a checker-

board of known size on a plane, the resulting correspondences can be used to solve

for the equation of the plane in world space. Now given any point in the camera

that falls onto this plane, the 3D world position of the point can be determined

through ray-plane intersection. Therefore, if the projector emits a spatial code

that the camera can locate, this point can be translated into the corresponding

3D world point. For instance, if the projector emits a checkerboard pattern, the

corners of the pattern can serve as spatial codes yielding projector to world space

correspondences. Figure 18 shows the projected checkerboard along with the phys-

ical checkerboard at different orientations. Then the projector can be calibrated

using the Zhang based calibration method that was used to calibrate the camera.

This method is straightforward in theory and relatively easy to implement. How-

ever, the calibration accuracy of these methods depends heavily on the accuracy

of the pre-calibration of the camera.

Both image capture and projection is generally described by a standard

pinhole camera model with intrinsic parameters including focal length, principle

point, pixel skew factor, and pixel size; and extrinsic parameters including rotation
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and translation from a world coordinate system to a camera or projector coordinate

system. We assume that we have a calibrated camera. The projector calibration

can be summarized as follows:

Step 1: Recover calibration plane in camera coordinate system

Step 2: Project a checkerboard on calibration board, capture an image of

the checkerboard and detect its corners

Step 3: Determine 3D coordinates of each projected corner by intersecting

its corresponding ray from the camera and the recovered calibration plane

Step 4: Calibrate the projector using the correspondences between the 2D

points of the image that is projected and the 3D projected points.

Figure 17: Schematic view of the projector, camera and the calibration plane. By
changing the orientation of the calibration plane and taking images of the plane by a
pre-calibrated camera, the intrinsic parameters of the projector and the translation and
the rotation matrices of the camera with respect to projector can be estimated.
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Figure 18: Samples of projected checkerboard along with physical checkerboard at
different orientations used for projector calibration

3.3 Pseudocode pattern

Since in this application (at least) water surface is dynamic, we have to

use a structure for the illuminant that enables us to localize all light spots in

a single-shot. We adopt the random pseudocode structure proposed in [53, 86].

They introduced a brute force algorithm to generate an array that preserves the

uniqueness of subwindows, but it may not exhaust all possible subwindow pat-

terns. The method is relatively intuitive to implement in computer algorithms.

For example, Figure 19 (left) shows a 6 × 6 array with subwindow size of 3 × 3

using three code words (R,G,B). The computing procedure is as follows: first fill

the upper left corner of the 6×6 array with a randomly chosen pattern. Then, add

a three-element column on the right with random code word. The uniqueness of

the subwindow is verified before adding such a column. Keep adding the columns

until all columns are filled with random code words and subwindow uniqueness is
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verified. Similarly, add random rows in the downward direction from the initial

subwindow position. Afterwards, add new random code words along the diagonal

direction. Repeat these procedures until all dots are filled with colors. Again, this

computational procedure may not guarantee the generation of a pseudo-random

array for all the array sizes and code words, but good results have been achieved

for many cases. Figure 19 (right) shows an example of a pseudo-random array

with 50× 50 dimensions.

Figure 19: Generating pseudocode: (left) step by step pseudocode generation (right)
example of a generated 50× 50 pseudocode

In all our experiments we are using three colors to create the pseudocodes

but there is no restriction on the number of colors that could be used in order to

create such pseudocodes. However, increasing the number of colors could poten-

tially increases the noise sensitivity when measuring colorful scenes.
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3.4 Water surface estimation

Consider the scene in Figure 14(b). Without loss of generality, we consider

the water surface along the XZ plane. A projector is located above water and a

camera under water. We assume that both camera and the projector are calibrated,

so the transformation from camera frame to projector frame is established. The

water surface (blue line) is a dynamic surface. A light ray (red line) emitted from

the projector passes through the water surface and refracts based on Snell’s law.

Then it reflects from the object surface towards the camera. We assume that the

water surface has a parametric model, e.g. it can be represented by a polynomial.

Using a calibrated camera, the rotation and translation matrices of any

plane can be obtained. Consider a plane with an attached checkerboard (calibra-

tion grid) and concentrate on the camera reference frame attached to that grid.

Figure 20 shows the reference frame (O,X, Y, Z) attached to that calibration grid.

Let P be a point with coordinate vector Xp = (Xp, Yp, Zp) in the grid

reference frame shown in Figure 20. Let Xc
p = (Xc

p, Y
c
p , Z

c
p) be the coordinate

vector of P in the camera reference frame. Then Xp and Xc
p are related to each

other through the following rigid motion equation:

Xc
p = RcXp + T c (10)

In particular, the translation vector T c is the coordinate vector of the origin

of the grid pattern (O) in the camera reference frame, and the third column of the

matrix Rc is the surface normal vector of the plane containing the planar grid in

the camera reference frame.
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Figure 20: Object coordinate system. Using a calibrated camera and a checkerboard
attached to the white board, the coordinates of all dots of the psuedorandom code can
be calculated. The Z component of all these dots are equal to zero.

The translation vector T c and the rotation matrix Rc of the plane can

be recovered in the camera reference frame using corresponding points. For this

purpose, one can use the corners of the checkerboard. These corners can be easily

determined in the image plane. Once the coordinates of a point is determined in

the image plane, it can easily be expressed in the camera reference frame using the

intrinsic camera parameters. On the other hand, each corner on the calibration

board becomes Xp = (Xp, Yp, 0) . By plugging corresponding Xp’s and Xc
p’s into

Eq. 10, the T c and Rc will be estimated. Once the transformation from the plane

coordinates system to camera reference frame is established, the coordinates of any

point on the plane can be determined in camera reference frame.

Using the rotation matrix and translation vector between camera and the

projector obtained from camera-projector calibration, one can transform object

points from the camera reference frame to the projector reference frame. The

coordinates of the pseudocode in the projector image plane can easily be expressed
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in the projector reference frame using the intrinsic projector parameters obtained

from the camera-projector calibration.

For a moment, suppose that we know the parametric representation of

water surface function in the projector reference frame; i.e. Zw = F (Xw, a) where

a = {a0, a1, ..., an} are parameters of the function. Let us represent the intersection

of ray i and the water surface as (Xw
i , Z

w
i ). See Figure 21 for illustration of these

parameters. This intersection can be determined by finding a point that satisfies

both the water surface function and the line that represents the ray from the

projector:

Zw
i = Zproj +

(Z ′i − Zproj)(Xw
i −Xproj)

(X ′i −Xproj)
(11)

Where (Xproj, Zproj) are the projector coordinates. According to Figure 21,

one can write Xi as:

Xi = Xproj + ∆Xa
i + ∆Xw

i (12)

where

∆Xa
i = ±|(Zw

i − Zproj) cot(αi)| (13)

and

∆Xw
i = ±|(Zw

i − Zi) cot(αi + βi)| (14)

In above Eq.(13) and Eq.(14), αi can be easily estimated using the intrinsic

parameters of the projector which have been already estimated in the calibration

step, i.e. tan(αi) = fproj/x
p
i . Also, βi is the difference between the incident angle
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Figure 21: Two dimensional path of a light ray emitted from a projector located above
the water and captured by an underwater camera. The ray refracts after hitting the
water surface based on its incidence angle θai .

θai and the refractive angle θwi :

βi = θai − θwi (15)

The incident angle for each ray can be calculated by the following equation:

θai =
π

2
− (αi − γi) (16)

where γi is the slope of the water surface at the intersection of the ray i with the
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water surface. If the water surface is known, it can be calculated by:

tan(γi) =
dF (Xw

i , a)

dXi

(17)

once the incident angle θai is determined, the refractive angle θwi can be calculated

using Snell’s law:

θwi = sin−1(
na
nw

sin(θai )) (18)

where na is the refractive index of the air and nw is the refractive index of the

water.

In conclusion, if the shape of the water surface is known, one can trace

each ray and easily predict the coordinates of that ray in the projector coordinate

frame. Now, the problem of water surface estimation becomes an optimization

problem. In other words, we need to find a set of water surface parameters a that

minimizes the distance between estimated coordinates of rays and their observed

coordinates:

minimize
a

J(a) (19)

where J(a) is the cost function and is equal to

J(a) =
1

2n

n∑
i=0

(Xi −Xp
i )2 (20)

In Eq.(19) and Eq.(20), n is the number of rays that will participate in water

surface estimation. Note that n should not be less than the number of parameters

that describe the water surface. We used the exhaustive search algorithm as a
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global optimization technique to solve this problem. Other optimization techniques

can be used to find the water surface parameters as long as they do not entrap in

local minima.

3.5 Object reconstruction

Once the water surface parameters are determined, the path of each ray

passing through the water surface can be predicted. When both the camera and

the projector are in the same medium, in order to compute object coordinates,

only one distance, D, needs to be determined (Figure 14(a)). This can be done

using Eq.(1). However, in our proposed system, because of refraction of the light

rays, this equation is not valid for computing the distance between the camera and

the object. In the presence of the refracted light rays, the distance between the

camera and the object, can be computed by adding or subtracting ∆D from D as

shown in Figure 21.

D = B
sin(ψp)

sin(ψc + ψp)
±∆D (21)

in Eq.(21), if the ray refracts towards the camera, use −∆D, and if it refracts

aways from the camera, use +∆D.

∆D = Bw sin(βi)

sin(βi + ψw)
(22)

where

ψw =

 ψc + ψp if ray refracts away from the camera

π − ψc − ψp if ray refracts towards the camera
(23)
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Bw is the distance between two intersections: (1) the intersection of the ray

from projector and the water surface and (2) the intersection of the undeviated

ray from projector and the reflected ray from object towards the camera. By the

water surface function obtained using the procedure in Section 3.4, one can easily

obtain its intersection with the ray projected from the projector. Also, using D

calculated by Eq.(1), the coordinates of the camera, and the direction of the ray

reflected from the object, the second intersection can be obtained.
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Evaluation

4.1 Experiments and results

Several experiments were conducted to justify the ability of the proposed

structured light method to estimate the water surface and the underwater object

shape. We present the results for both synthetic and real data. A cylindrical

object with a flat top and a spherical object were used for 3D reconstruction.

These examples demonstrate that the method works for objects with different

shapes. The experiments were conducted in the presence of both flat and wavy

water surfaces. We represent the flat water surface with a linear model and the

wavy water surface with a sinusoidal model. Other parametric models could be

used if they are more appropriate for a particular condition of the water surface.

4.1.1 Synthetic data

To evaluate the correctness and performance of the implemented method,

we created synthetic data for both linear and sinusoidal water surfaces (see Figure

15 (b),(c)). The world coordinate origin is assumed to be at the projector center.

All internal calibration parameters for the projector are known and were set to

(xProjc , yProjc ) = (0, 0), fProj = 100pixel, and no lens distortion for simplicity. With

known water surface parameters, we were able to calculate (X,Z) pairs for each

ray using Eq.(11) to Eq.(14) .

In the first synthetic dataset, it is assumed that the water surface has a

linear function, i.e. Zw
i = a1X

w
i + a2. In this dataset, a1 and a2 were set to −0.07

50
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Figure 22: (a)Synthetic flat water surface of the form Zwi = a1X
w
i + a2 and the rays

from the projector. The a1 and a2 were set to −0.07 and 1.16 (b) Corresponding cost
function.
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Figure 23: Minimum value of the cost function for estimating a flat water surface
parameters while adding different levels of noise to the actual coordinates of 11 rays
shown in Figure 22(a). As the level of noise in the input data increases, the minimum
value of the cost function increases.

and 1.16 respectively. In other words, it is assumed that the projector is located

1.16(m) above a water surface with slope −0.07. The (X,Z) pairs for 11 rays

were calculated using Eq.(11) to Eq.(14) . In addition, random noise was added to

(X,Z) coordinates with a relatively high standard deviation δ = 0.0113 (m). That

is, after calculating the coordinates of each point in the camera coordinate system

and transferring them to the projector coordinate system, the (X,Z) pairs have

error with δ = 0.0113 (m). Figure 22(b) shows the cost function over the range of

a1 and a2 for this dataset with increment 0.001 for both parameters. The minimum

value of the cost function was 4.7357e− 05 (m) that happens at a1 = −0.054 and

a2 = 1.183. This shows even in the presence of relatively high amount of noise,

there is only 23 millimeter error in the estimated height and 0.016 error in the

slope which is a good estimate for the water surface parameters.
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We added different levels of noise to the coordinates of those 11 rays and

repeated the above procedure to estimate the parameters of the flat water surface.

Figure 23 plots the minimum value of the cost function versus standard deviation

of errors in the input coordinates. As it is expected, the higher the level of noise

in coordinates, the higher the value of minimum in the cost function.

In the second synthetic dataset, we use a sinusoidal function for the water

surface, i.e. Zw
i = A sin(kXw

i − φ) + B. In this case, there are four parameters

that need to be estimated and they were set to: A = 0.1(m), k = 5(m−1), φ = −π
2

,

and B = 1. These parameters represent a setup consisting of a wavy water surface

with amplitude 0.1(m), wavenumber 5(m−1), phase −π
2

and a projector located 1

meter above the average water surface. As in the previous case, the (X,Z) pairs

for 11 rays were calculated using Eq.(11) to Eq.(14) . No random noise was added

to the coordinates in this dataset. The cost function has four dimensions. Figure

24 shows profiles of the cost function for all four parameters. In each profile, 3

parameters were fixed and set to the values corresponding to the minimum of the

four dimensional cost function. Since the signal was noiseless, the estimated value

of the parameters are exactly the same as their actual values. Note that for k

the minimum happens for two values, i.e. −5 and +5. Plugging either of these

two values into the water surface equation does not affect the shape of the water

surface and it will be identical for both values. In other words, only the positive

values for wavenumber could be assessed.
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Figure 24: Cost function profiles for a synthetic Sinusoidal water surface of the form
Zwi = 0.1 sin(5Xw

i − −π
2 ) + 1. Cost function profiles for a synthetic sinusoidal water

surface of the form Zwi = A sin(kXw
i −φ)+B where A = 0.1, k = 5, φ = −π

2 , and B = 1.
Each profile represents a cross section of the four dimensional cost function along one
parameter: (a)Amplitude A, (b)Wavenumber k, (c)Phase φ, (d)Distance between the
projector and the average water surface B.
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4.1.2 Real data

All experimental data were acquired in the Air-Sea Interaction Saltwater

Tank (ASIST) at the Rosenstiel School of Marine and Atmospheric Science, Uni-

versity of Miami. ASIST is a state-of-the-art wind-wave tank with fully transparent

acrylic walls and its primary purpose is to study various physical processes at the

air-sea interface. The working section of ASIST is 15(m) long, 1(m) wide and 1(m)

high. For simulation of realistic ocean conditions, it is equipped with a mechan-

ical wave generator (wave frequencies 0.25Hz-3Hz, amplitudes 0-0.1(m)), a wind

generator (wind speed in the tank’s centerline 0-30 (ms−1), a current generator

(current speed 0-0.5 (ms−1)), and a water temperature control (5-40 C).

The mechanical wave generator in ASIST is a flat vertical panel, moved

horizontally by a hydraulic motor according to a pre-programmed trajectory. Dur-

ing all experiments with wavy water surface, the shape of the motor trajectory was

exclusively a sine wave with various frequencies and amplitudes.

A Canon EOS Digital Rebel XS camera was used to capture images of the

distorted pseudorandom code. The camera resolution was set to 3888×2592 pixels.

An NEC’s MT1065 projector was used to project the calibration checkerboard and

the pseudorandom code. This projector is rated at 800:1 contrast and utilizes 3

LCDs equipped with micro lenses to increase light output. The resolution of the

projector was set to its native resolution which is 1024× 768 pixels (XGA). Also,

the resolution of the output images from the computer was set to 1024 × 768 to

avoid resampling of the pixels by the projector.
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As a first step in 3D reconstruction, both camera and the projector were

calibrated using the method presented in Section 3.2. The projector was installed

above the water surface looking downward at a height of 1.24(m). The camera

was located next to the transparent side wall of the tank. The camera-projector

calibration was done while the tank was empty. Then we filled the tank with fresh

water and calibrated the camera as though it was underwater. The calibration

results for our setup are summarized in Table 1. The ratio of the focal length of

the wet camera (filled tank) to the dry camera (empty tank) was 1.3369 which is

close to the ratio of the refractive index of the water to the refractive index of the

air.

Note that, it is assumed that the projector coordinate system coincides with

the world coordinate system and thus all the extrinsic parameters for the projector

are equal to zero. Also, for the robustness of the calibration, the principal point

of the projector was set to the center of the projector. Fifteen images of the

checkerboard at different angles were used to calibrate the camera. Also, nineteen

images of the projected checkerboard on the actual checkerboard at different angles

were used to calibrate the camera and the projector. All the image and the pattern

coordinates used in the following experiments, were corrected for the lens distortion

before applying the equations.

In the first experiment, a flat board was used as an object. A checkerboard

was attached to this flat board so that the coordinates of every spot could be

estimated using a calibrated camera as was described in Section 3.4. This board
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Symbol Camera Projector

Intrinsic Parameters
Principal Point (Pixels) xc 1968.6 511.5

Principel Point (Pixels) yc 1545.3 383.5

Focal Length (Pixels) fx 4424.8 1802.1

Focal Length (Pixels) fy 4451.2 1835.6

Skewness Parameter s 0 0

Pixel Size Ration λx = fx
fy

0.9941 0.9817

Lens Distortion Parameters
k1 0.0436 0.2406

k2 0.3627 -0.4427

k3 0.0261 0.0515

k4 -0.0021 0.0187

k5 0 0

Extrinsic Parameters
Rotation (Degree) θX 82.73 0

Rotation (Degree) θY -7.01 0

Rotation (Degree) θZ 4.92 0

Location (m) Xc 0.1590 0

Location (m) Yc 0.7185 0

Location (m) Zc 1.3966 0

Table 1: System calibration results: Intrinsic and Extrinsic parameters for both camera
and the projector
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was placed in the tank with a slope such that it could be seen by camera while

the projector could illuminate the pseudocode on top of it. In this experiment, the

water surface was flat and no wave was generated. As can be seen in the acquired

image of the pseudocode in Figure 25(b), the water surface did not impose any

distortion, except scaling, in the pseudocode. This means that if we use a simple

linear function F (Xw
i , a) = a1X

w
i + a2 to represent the water surface, we should

expect the slope a1 to be zero and a2 to be equal to the distance between the

projector and the water surface. Figure 25(a) shows the cost function for different

combinations of a1 and a2. The increments for a1 and a2 were equal to 0.1. The

dark areas show lower values and the bright areas show the higher values of the

cost function. Where there is no intersection between predicted refracted rays and

the object (board) within a defined limit, the value of the cost function was set

to infinity. As can be seen for different a2’s, wherever a1 = 0 the minimum of the

evaluation function occurs. The minimum value of all pairs of a1 and a2 occurs at

a1 = 0 and a2 = 1.2 which is indicated by the intersection of two lines on Figure

25(a). Therefor, the best representation for the water surface function would be

F (Xw
i , a) = 0X + 1.2.

In the second experiment, we took images of the projected pseudocode

approximately every 10 minutes while the tank was filling up with a constant

rate. Figure 26(a) shows 6 samples of captured images. The water surface in all

these images was flat and no wave was generated. With increasing height of the

water surface the pseudocode pattern shrinks and this effect can be seen in the
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Figure 25: (a) Image of the pseudocode pattern on a flat board under a flat water
surface (no wave), (b) Corresponding evaluation function for F (Xw

i ,a) = ax + b for
different pairs of a and b with the increment of 0.1, (c)Extracted pseudocode pattern.



www.manaraa.com

60

(a)

0 500 1000 1500 2000 2500 3000 3500
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time (sec)

W
a

te
r 

le
v

e
l 

d
if

fe
re

n
c

e
 (

m
)

(b)

Figure 26: (a) Estimated water level differences in specific time intervals while filling
up the tank with fresh water at a constant rate, (b) corresponding images of projected
pseudocodes.



www.manaraa.com

61

consecutive images in Figure 26(a). Note that the camera and the projector are

fixed and the distance between the projector and the water surface decreases as

the tank is being filled up. Then the water surface for each image is estimated,

assuming the water surface follows a flat surface model, i.e. F (Xw
i , a) = a1X

w
i +a2

as in the previous experiment. The estimated a1 for all cases were close to zero.

Figure 26(b) shows the estimated height difference for the water surface versus

time. As expected, the plot has a linear pattern and was consistent with the

constant rate of filling up the tank.

In the next experiment, we generated a wavy water surface using the me-

chanical wave generator. It was set to generate a water surface wave using an

input signal of frequency 2 (Hz), maximum voltage 1 (volt) and minimum volt-

age 0.5 (volt). The wave was sinusoidal and it is assumed to be modeled as

F (Xw
i , a) = A sin(kX − φ) + B. In this model, A is amplitude, k is wavenum-

ber, φ is shift, and B represents the distance between the projector and the mean

water surface. The mechanical wave maker settings results in a wave with k = 16

(m−1) and A = 2.5 (cm). Figure 27(a) shows the image of the pseudocode cap-

tured under the wavy water surface. As highlighted in the image, even under the

effect of high curvature waves, the pseudocode pattern is detectable and can be

extracted. Although it might not be possible to extract all the projected rays, it

is possible to extract a large enough number of rays in order to recover the water

surface parameters. In this experiment, the sinusoidal model has four parameters

and at least four rays are necessary to trigger the water surface estimation.
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Figure 27: (a) An image used for water surface reconstruction, the highlighted section
shows that even under the effect of high curvature waves, white flickers, the pseudocode
can easily be detected, (b) Reconstructed sinusoidal water surface, the object, and
the projector, (c)-(f) Cost function profiles for a wavy water surface modeled as a
sinusoidal function of the form Zwi = A sin(kXw

i − φ) + B. Each profile represents a
cross section of the four dimensional cost function along one parameter: (c)Amplitude
A, (d)Wavenumber k, (e)Phase φ, (f)Distance between the projector and the average
water surface B.
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We calculated the cost function for the entire span of the possible solutions

to find the best set of four parameters (A, k, φ,B) within defined limits for each

parameter; A ∈ [0 0.1](m) with 0.02(m) increment step, k ∈ [0 25] with 1 increment

step, φ ∈ [−π π] with π
10

increment step, and B ∈ [1 1.5](m) with 0.02 (m)

increment step. The minimum of the cost function happens at A = 0.02(m),

k = 11(m−1), φ = −2.8274, and B = 1.26(m). Figure 27(c)-(f) show the profiles

of the cost function for all four parameters at the minimum. The parameter B

which represents the distance between the projector and the average height of the

water surface, is very close to our measurements, i.e. 1.24 (m). In our setup,

since the area covered by the entire pseudocode pattern does not contain several

wavenumbers, the difference between the cost function for k ∈ (0, 16) is small (see

Figure 27 (d)). However, the cost function drastically increases for higher values

of k. Therefore, in this experiment, by plugging values less than 16 for k into

the water surface model, the difference between the resulting shapes of the water

surface in the region covered by the entire pseudocode would not be distinct. If a

better estimate in the final value of k is needed, the pseudocode has to cover a large

enough area to at least encompass one full wavelength. Figure 27(b) demonstrates

the position of the projector, object, and the estimated water surface with respect

to each other.

Assuming a sinusoidal model, the water surface parameters were calculated

for seven consecutive images. The images were taken at 5 second intervals while the

wave generator was creating a wavy water surface with the same characteristics.
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Figure 28(a) shows all seven consecutive images. Ideally estimated A, B, and

k should be the same for all these images while the shift parameter φ might be

different for each image. As in the previous experiment, the cost function for

different combinations of parameters were calculated and the set of parameters

corresponding to the minimum value of the cost function were picked as the final

solution. Table 2 summarizes the final results for all these images. As expected,

the parameter A is equal for all seven images. Note that we used a 2 (cm) step

size for A in calculating the cost function and if a finer step size were used, the

estimated values would be slightly different but within an acceptable range. Also,

the distance between the projector and the average water surface, B, for all images

are within the expected range. As previously mentioned, since the pseudocode

pattern does not contain a full wavelength of the generated wave, the value of k

does not affect drastically the shape of the final water surface, i.e. there is a subtle

difference between the water surfaces obtained by plugging different numbers of

k < 16 into the sinusoidal water surface model. For k >= 16 the water surface

model represents one (or more than one) full wavelength within the borders of

pseudocode pattern and the effect of k would be more visible. Given that, in all

images we obtained a good estimate of k. The value for shift parameter φ as

expected is different for each image. Figure 28(b)-(c) shows all the reconstructed

water surfaces using the parameters estimated from seven images.

A better way to assess the accuracy of the proposed method is to recon-

struct an object with known geometric shape and compare the reconstructed shape
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Figure 28: (a)Seven consecutive images of a flat board and cylindrical object at the
presence of wavy water surface taken by an underwater camera, (b) Reconstructed si-
nusoidal water surfaces for each image with respect to the location of the projector and
the object, (c) Reconstructed water surfaces are highlighted for better visual represen-
tation, (d) Reconstructed cylindrical object attached to the board using combined data
from all seven images.
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Image Number 1 2 3 4 5 6 7
A 0.02 0.02 0.02 0.02 0.02 0.02 0.02

k 11 7 13 7 7 12 8

φ -2.83 -2.20 1.26 -2.51 -2.51 2.83 -1.26

B 1.26 1.22 1.28 1.26 1.22 1.24 1.24
Avg. Error (m) 0.002 0.0023 0.0019 0.0016 0.0018 0.0023 0.0013

Table 2: Estimated water surface parameters for seven images shown in Figure 28(a)
using a sinusoidal model Z = A sin(kX − φ) +B for the water surface.

with the original one. For this purpose, we used a cylindrical object with known

thickness (0.053 meter) and attached it to a board. Several images of this object

were taken while a wavy water surface was generated (see Figure 28(a)). The

water surface was estimated for each image in the previous experiment and the

results are summarized in Table 2. The increment steps for all parameters of the

sinusoidal model are the same as in the previous experiment. Then, using the es-

timated water surface parameters and Eq.(21) and Eq.(22), the three dimensional

coordinates of the projected pattern on both the cylindrical object and the board

were calculated. A plane was passed through all the points on the board. Using

the 3D coordinates of the points on the cylindrical object and the equation of

the plane, the distance from each point on top of the cylinder to the plane was

calculated. This distance for all the points should be the same and equal to the

thickness of the cylinder. Cumulatively, in seven images, 166 points were extracted

from the pattern on top of the cylindrical object. The distances for points to the

board were calculated. The average error in the distance for these points was zero

and the standard deviation of error was 0.0023 meter. Higher accuracy could be
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achieved if the rays were thinner and sharper. However, in the presence of waves,

the thiner rays could easily disappear and are more difficult to detect in the im-

ages. Figure 28(d) shows the reconstructed geometric shape of the board and the

attached cylindrical object using all the points obtained from the seven images.

Note that we can reconstruct the geometric shape of the cylindrical object with

a single image, however, in this experiment we used the single shot method in a

multi-shot scheme to obtain more points on top of the object.

In order to show that this method works for non-planar objects, we cut a

spherical object (a round buoy) in half and attached it to the board. The radius of

the buoy was 83 millimeter. We projected the pseudocode pattern on this object

while the wave generator was making a wavy water surface (See Figure 29(a)).

Again we calculated the water surface parameters using the projected rays on

the board and eventually the coordinates of projected rays on this object. The

white dots on the object shown in Figure 29(b) illustrate the extracted rays on

the surface of the spherical object. Then we fit a sphere with 83 millimeter radius

to these points to measure the accuracy of the estimated coordinates. The mean

of the residuals was close to zero (2.5667e-04 meter) and their standard deviation

was equal to 0.0034 meter. The reconstructed object, the extracted points on the

object and the plate are shown in Figure 29(c).

Note that even in the presence of high curvature waves, we were still able

to locate the projected rays and obtain an estimate of the water surface which was

good enough for our purpose of recovering the 3D shape of underwater objects.
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Figure 29: (a)A spherical object attached to a board illuminated by a pseudocode
pattern emitted from a projector located above water, (b)White dots depict extracted
pseudocode pattern on top of the object, (c)Reconstructed spherical object attached
to the board using data from one single image. Note: bigger pseudocodes are easier to
extract under a wavy water surface.
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4.2 Sensitivity Analysis

It is important to understand the behavior of the proposed method in the

presence of error in the input parameters. Inevitably there would be error in

the water surface estimation and in the system calibration. The question is how

these errors will affect the accuracy of the final reconstructed object. Sensitivity

analysis helps us answer this question by measuring changes in output values while

changing the values of input parameters. It determines which parameters are the

most important and most likely to affect system behavior and/or predictions of

the model. Following a sensitivity analysis, values of critical parameters can be

refined while parameters that have little effect can be simplified or ignored.

There are many common ways to do sensitivity analysis. A partial deriva-

tive can be a sensitivity function for a system with well-defined equations. Statis-

tical techniques can also be used when the model is too complex and the inputs

are described with probability distributions.

The sensitivity functions can be categorized into analytic and empirical

functions [87]. Analytic sensitivity functions are used when the system under study

is well defined and mathematically well behaved (e.g. continuous derivatives).

These generally take the form of partial derivatives. They are convenient and have

an advantage in that the sensitivity of a system to a given parameter is given as a

function of all other parameters and can be plotted as functions of these variables.
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Empirical sensitivity functions are often just point evaluations of a system’s

sensitivity to a given parameter(s) when other parameters are at known, fixed

values. They are generally determined by observing the changes in output of

a computer simulation as model parameters are varied from run to run. Their

advantage is that they are often simpler than their analytic counterparts or can

even be determined for an un-modeled physical system [87].

Since our model is mathematically well behaved and taking derivatives is

feasible, we will use analytic sensitivity functions to evaluate the effects of error in

the input parameters on the model’s output. Specifically, we will assess the effect

of error in height and slope of the estimated water surface as well as the error in

the camera-projector baseline as the representative for the system calibration.

The following types of analytic sensitivity functions are common. They are

all based on finding the partial derivative of a mathematical system model with

respect to some parameter [87].

• Absolute

The absolute-sensitivity of the function F to variations in the parameter α

is

SFα =
∂F

∂α
|NOP (24)

It should be evaluated at the normal operating point (NOP) where all the

parameters have their normal values. The function F must be differentiable

with respect to α and may also be a function of other parameters. Absolute-

sensitivity functions are useful for calculating output errors due to parameter
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variations and for assessing the times at which a parameter has its greatest

or least effect.

• Relative

The relative-sensitivity of the function F to variations in the parameter α is

S
F
α =

%Change in F

%Change in α
=

∆F/F

∆α/α
=
∂F

∂α
|NOP

α0

F0

(25)

Similar to the absolute sensitivity, the relative sensitivity should be evaluated

at the normal operating point (NOP). Relative sensitivity functions are used

to compare the effects of different parameters because they are dimension-

less, normalized functions. The lack of dimensions in these functions allow

easy comparison of parameters’ changes on model outputs even though the

parameters may describe widely varying aspects of the model and have dif-

ferent units. As it is shown in Eq.(25), the relative sensitivity functions are

formed by multiplying the absolute sensitivity function by the normal value

of the parameter and dividing by the normal value of the function.

• Semi-relative

The semi-relative sensitivity of the function F to variations in the parameter

α is

S̃Fα =
∂F

∂α
|NOP α0 (26)

Again, the semi-relative sensitivity function should be evaluated at the nor-

mal operating point (NOP). As can be seen by the definition, semi-relative

sensitivity functions are scaled version of absolute sensitivity functions and
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therefore, will have the same shape as absolute-sensitivity functions. No-

tice that, when a parameter has a value of zero, its semi-relative sensitivity

function is also zero.

We will use both absolute-sensitivity and relative-sensitivity functions as

the criterions for our assessments.

4.2.1 Sensitivity of the height of water surface

As it is shown in Figure 21 in the previous chapter and formulated in

Eq.(12), the X coordinate of a point is the sum of corresponding displacement in

air and water, i.e. ∆Xa
i and ∆Xw

i (These formulations can be similarly applied to

Y coordinate as well). Error in the height of the water surface will affect both of

these displacements. The absolute sensitivity function of X to the height of water

surface Zw
i has the following form

SXi
Zw
i

=
∂Xi

∂Zw
i

=
∂∆Xa

i

∂Zw
i

+
∂∆Xw

i

∂Zw
i

= cot(αi) + cot(αi + βi) (27)

As can be seen, the absolute sensitivity function for the height of water

surface is a function of two angles βi and αi (See Figure 21 for illustration of these

two angles) and is not a function of height itself. Figure 30 depicts SXi
Zw
i

versus

different βi and αi. As expected, the error in height does not have any effect on

the ray at the nadir of the projector if the incidence angle is zero. In this case the

effect of error in estimated height of water surface on both ∆Xa
i and ∆Xw

i is equal

to zero. Remember that βi is a function of incidence angle θai and if the incidence

angle is zero, the βi will also be zero. In fact, there is a (dark-blue) curve in Figure
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Figure 30: Absolute sensitivity function for reconstructed X (or Y ) coordinates to the
height of water surface. The function is plotted for different values of βi and αi.

30 which represents pairs of βi and αi where the effect of error in height is zero.

Essentially, for these pairs, the error in ∆Xa
i and ∆Xw

i due to change in height

will cancel out each other and their addition is equal to zero. This curve will be

distinct for each water type and will change base on the refractive index of the

water.

The relative sensitivity function for the height of water surface can be ob-

tained by multiplying the absolute sensitivity function by the height of water sur-

face Zw
i and dividing by Xi, i.e.

S
Xi

Zw
i

= SXi
Zw
i

Zw
i

Xi

= SXi
Zw
i

Zw
i

(Zw
i − Zproj) cot(αi) + (Zi − Zw

i ) cot(αi + βi)
(28)

As can be seen, the denominator Xi has a similar form as absolute sensitivity

function (see Eq.(27) for comparison). By looking at the absolute sensitivity func-
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tion in Eq.(27), we realize that it has two components: Above-water component

cot(αi) and Underwater component cot(αi + βi). The Xi is the weighted sum of

these two components and the weights are the distances in the Z direction that the

ray travels from the projector to the object above water (Zw
i − Zproj) and under-

water (Zi−Zw
i ). In other words, in this case, the relative sensitivity function S

Xi

Zw
i

is a scaled version of the absolute sensitivity function SXi
Zw
i

, with scale being (Zw
i ),

divided by the weighted sum of the two components of the absolute sensitivity

function.

Figure 31(a) shows the relative sensitivity function S
Xi

Zw
i

for our experimental

setup. In this case, the projector is located at 1.24 (m) above the water surface

and the center of the object is at the depth equal to 16 (cm). In addition, we

plotted the relative sensitivity function for two more cases. Figure 31(b) shows the

relative sensitivity for the same parameters as in our experimental setup except the

object is assumed to be located 5 meters below water (for more deeper objects).

Also, in Figure 31(c), the only parameter that is different from the parameters

in our setup is the height of the water surface. As can be seen in Eq.(28) and

illustrated in Figure31(a)-(c) , when the denominator is zero (or close to zero), the

relative sensitivity of the reconstructed X coordinate to the height of the water

surface is not valid. Also, note that the pairs of βi and αi with non-valid relative

sensitivity are different in each setup. In these cases, it is recommended to use

absolute sensitivity as a criterion for sensitivity analysis.
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(a)

(b) (c)

Figure 31: Relative sensitivity function for the reconstructed X or Y coordinates to the
height of water surface. The function is plotted for different values of βi and αi. Plot of
relative sensitivity for the (a) same parameters as in our experimental setup, (b) same
parameters as in our experimental setup except the object is at the depth equal to 5
meters, (c) same parameters as in our experimental setup except the projector is closer
to the water surface.
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4.2.2 Sensitivity of the slope of water surface

The second input parameter of interest is the slope of the water surface.

Using the chain rule for computing the derivative of the X with respect to the

slope of the water surface, the absolute sensitivity function will be:

SXi
m =

∂Xi

∂m
=
∂Xi

∂βi

∂βi
∂θai

∂θai
∂γi

∂γi
∂m

(29)

where

∂Xi

∂βi
=
∂∆Xw

i

∂βi
= −(Zw

i − Zi) csc2(αi + βi) (30)

∂βi
∂θai

= 1− na cos(θai )

nw

√
1− n2

a sin2(θai )

n2
w

(31)

∂θai
∂γi

= 1 (32)

∂γi
∂m

=
1

m2 + 1
(33)

In above equations, m is the slope of the water surface and the rest of the

parameters are shown in Figure 21. As can be seen, the absolute sensitivity is a

function of slope. The absolute sensitivity function for different values of slope and

αi, using parameters of our experimental setting, is shown in Figure 32(a). This

function will also have a different shape if the object is at different depth. The

deeper the object, the more severe would be the effect of change in slope. This

effect is demonstrated in Figure 32(b)-(c). Assuming the object is located 2 meters

below the projector and the depth of the object changes from 1 meter to 0.5 meter
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by changing only the level of water, one can see that the absolute sensitivity to

the slope is higher at 1 meter depth compared to 0.5 meter for all the slopes and

αi’s. Also, contrary to the height of water surface parameter, at the nadir of the

projector, the change in the slope has its maximum effect on the coordinate X.

The relative sensitivity function for the reconstructed X (or Y ) coordinates

to the slope of water surface can be obtained using Eq.(25)

S
Xi

m = SXi
m

m

(Zw
i − Zproj) cot(αi) + (Zi − Zw

i ) cot(αi + βi)
(34)

As can be seen, the denominators in Eq.(34) and Eq.(28) are the same.

Similarly, the relative sensitivity function to the slope is not valid when the de-

nominator is zero (or close to zero). Figure 33 (a) shows the relative sensitivity

using parameters of our experimental setting for different slopes and αi’s. In ad-

dition, as in absolute sensitivity to slope, we plotted the relative sensitivity to

slope for two hypothetical settings; one with an object at 1 meter depth (Figure

33(b)) and one with an object at 0.5 meter depth (Figure 33(c)). For both of these

settings, the object is 2 meters away from the projector and only the height of

water surface changes. Note that, as in relative sensitivity to the height of water

surface, the pairs of parameters (m, αi) with non-valid relative sensitivity to the

slope of water surface are different in each setup. The reason is that due to the

change in the height of water surface or the height of object, the denominator in

both sensitivities becomes zero (or close to zero) for different pairs of parameters.
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(a)

(b) (c)

Figure 32: Absolute sensitivity function for the reconstructed X (or Y ) coordinates
to the slope of water surface. The sensitivity function is a function of slope itself.
Absolute sensitivity for (a) our experimental setup Zwi = 1.24(m) and Zi = 1.4(m), (b)
hypothetical setup, Zwi = 1(m) and deeper object Zi = 2(m), (c) hypothetical setup,
Zwi = 1.5(m) and Zi = 2(m).



www.manaraa.com

79

(a)

(b) (c)

Figure 33: Relative sensitivity function for the reconstructed X (or Y ) coordinates to
the slope of water surface. Relative sensitivity for (a) our experimental setup Zwi =
1.24(m) and Zi = 1.4(m), (b) hypothetical setup, Zwi = 1(m) and deeper object
Zi = 2(m), (c) hypothetical setup, Zwi = 1.5(m) and Zi = 2(m).
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4.2.3 Sensitivity of the baseline

The last parameter for sensitivity analysis is the baseline between the cam-

era and the projector B. Unlike the height and slope of water surface, this pa-

rameter is estimated in the system calibration step. We assume there is no other

calibration error except error in the baseline estimation. We are investigating the

effect of this error on the distance between the object and the camera (D).

According to Figure 21, Bw is equal to

Bw = B
sin(ψc)

sin(ψc + ψp)
−Ba (35)

where Ba is the distance a ray travels from the projector to the water surface in

the air. The absolute sensitivity of the distance between the object and the camera

D to the camera-projector baseline B is the partial derivative of D with respect

to B and can be obtained using

SDB =
∂D

∂B
=
∂D1

∂B
+
∂∆D

∂B
(36)

where

∂D1

∂B
=

sin(ψp)

sin(ψc + ψp)
(37)

and

∂∆D

∂B
=

sin(ψc)

sin(ψc + ψp)

sin(βi)

sin(βi + ψw)
(38)

Notice that the absolute sensitivity of distance D to the baseline is only

a function of angular parameters ψc, ψp, and βi. As shown in Figure 21, the
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angle ψw can be obtained from calibration parameters ψc and ψp. Figure 34 shows

the absolute sensitivity function for different ψc and ψp at a specific βi. The

overall shape of the absolute sensitivity function is similar for different βi’s. For

higher difference between angles of incidence and refraction, i.e. βi, the absolute

sensitivity is higher. The absolute sensitivity also increases as the ψc and ψp

increase. If the line of sight of the camera and the line of sight of the projector are

parallel, both ψc and ψp will be 90 degrees for objects at infinity.

The relative sensitivity function for the distance between the object and

the camera D to the camera-projector baseline B can be obtained by:

S
D

B = SDB
B

D
(39)

where distance D can be calculated by

D = B
sin(ψp)

sin(ψc + ψp)
+ (B

sin(ψc)

sin(ψc + ψp)
−Ba)

sin(βi)

sin(βi + ψw)
(40)

Figure 35 illustrates the relative sensitivity function for different βi for our

experimental setup where camera-projector baseline is 1.58 (m) and Ba = 1.3(m).

As expected from Eq.(40) and illustrated in Figure 35(b), the relative sensitivity

for rays with no refraction is equal to 1 for all pairs of ψc and ψp. By comparing

Figure 35(a)-(c), one can see that the relative sensitivity of distance D to baseline

B is higher for rays with higher refraction.

Now that we have calculated the relative sensitivity to different parameters,

we can easily compare their effects. For example, consider the following relative
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(a)

(b) (c)

Figure 34: Absolute sensitivity function for estimated distance between the camera
and the object D to the baseline between the camera and the projector B. Absolute
sensitivity for (a) βi = 20 degree, (b) βi = 0 degree (with no refraction), (c) βi = 30
degree (with extreme refraction). βi is the difference between angles of incidence and
refraction. The absolute sensitivity function changes for different values of ψc, ψp.
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(a)

(b) (c)

Figure 35: Relative sensitivity function for estimated distance between the camera
and the object D to the baseline between the camera and the projector B. Relative
sensitivity for (a) βi = 20 degree, (b) βi = 0 degree (with no refraction), (c) βi = 30
degree (with extreme refraction). βi is the difference between angles of incidence and
refraction. The relative sensitivity function changes for different values of ψc, ψp.
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sensitivities; S
Xi

Zw
i

: the X coordinates to the height of water surface in our experi-

ment in Figure 31(a), S
Xi

m : the X coordinates to the slope of water surface in our

experiment in Figure 33(a), and S
D

B : the object-camera distance to the camera-

projector baseline in Figure 35(b). The S
Xi

Zw
i

for βi = 17.25 (degree) and αi = 72.72

(degree) is equal to the S
Xi

m for slope m = −0.2 and αi = 90 (degree). Also, the

effects of the height and the slope of water surface on X coordinates with these

parameter values are comparable to the effect of baseline on the camera-object

distance for rays with no refraction. The value of all these relative sensitivities at

their respective parameters are equal to one.
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Conclusions and Future Work

5.1 Conclusions

We have presented a method for simultaneous reconstruction of the water

surface and underwater structures using a structured-light technique. The novelty

of our work is in the formulation of the reconstruction problem using an opti-

cal camera and a projector while the camera is underwater and the projector is

outside water. Compare to other underwater 3D reconstruction methods which

require both camera and the projector to be underwater, in our method only one

of the two components, i.e. the camera, needs to be underwater. The method

uses a checkerboard and a standard calibration procedure to estimate the intrin-

sic calibration parameters of both camera and the projector as well as extrinsic

calibration parameters between the camera and the projector. The intrinsic pa-

rameters are composed of focal length, principal point, skew coefficient and lens

distortions. The extrinsic parameters include rotation and translation vectors that

establish the coordinate transformation from the 3D projector coordinate system

to the 3D camera coordinate system. In this method, the projector, while outside

of the water, projects a unique random pseudocode color pattern onto the under-

water objects. Each subwindow in this pseudocode is unique and therefore can be

identified without any ambiguity. Unlike conventional structured-light methods

where the distortion of the projected pattern is solely due to the geometric shape

of the object surface, in this method, the geometric shape of the water surface and

85
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the object surface contribute to the distortion of the projected pattern. In order

to decompose the pattern distortions by the water surface and the object surface,

the method estimates the water surface shape and considers its effect on the final

distortion of the pattern. When the water surface is known, the refraction of each

ray can be calculated and using the path of the projected rays in the water, the

underwater object will be reconstructed.

This approach can be a basis for a wide range of underwater applications in

civil engineering such as offshore and nearshore mapping, monitoring underwater

structures and pipelines, GIS, and coral reef monitoring. In addition, it has ap-

plications in other fields such as archaeology, inspection of boats and shipwrecks,

underwater security and surveillance, and marine biology research. It is specifically

useful for 3D reconstruction in hazardous environments where minimal immersion

in one of the media is expedient. We hope this manuscript serves as a source for

constructing a practical system for underwater surface reconstruction and depth

scanning especially in shallow waters. As the system only utilizes affordable off-

the-shelf components, surface reconstruction in such environments is possible by

anyone who can afford a projector and a camera.

Although we can not claim our method for estimating water surface sur-

pass the previous methods of water surface estimation (due to the lack of common

ground truth data for comparison), we can say that as a byproduct, the method

gives a good and rough estimate of the water surface for underwater object recon-

struction purposes. We should mention that surprisingly one of the main deficien-
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cies of most previous methods for measuring sea waves is the lack of a mechanism

to check the accuracy of the final reconstructed water surface. In this thesis, we

measured the accuracy of the reconstructed water surface by reconstructing waves

in a controlled lab environment as well as reconstructing underwater objects with

known shapes using estimated water surface parameters. Although, because of the

space limitation in the lab, we were not able to test the larger areas that contain

several wavenumbers, the simulated data shows the potential of this method in

recovering the water surface.

Since our proposed technique uses an external light source for 3D recon-

struction, it falls within the category of active methods for 3D reconstruction.

Generally, existing image based techniques for reconstructing the 3D shape of

object surfaces can be classified into two main categories: Passive and Active.

Passive techniques rely only on the information embodied in the images acquired

by cameras under natural uncontrolled lighting while active techniques are based

on projecting patterns in the scene using a projector, and infer 3D structure from

the way the pattern deform on the objects.

Generally, passive techniques are less invasive than active techniques and

provide very accurate, high resolution and detailed data. However, the main draw-

back of passive techniques such as stereoscopy, is that they depend on the presence

of texture in the scene and suffer from a lack of reliable feature points or from un-

reliable matching between the views. Indeed, such techniques do not work on

texture-less objects. Consider for example a surface with uniform color where no
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salient feature (patches, points, lines, or curves) can be selected and tracked reli-

ably on the images. In this case, it is impossible to reconstruct the 3D structure of

the surface using passive techniques without adding texture. In fact, one solution

for reconstruction of such surfaces is to physically add texture to the scene by

pasting landmarks on objects. However, this method is not a desirable solution in

many applications including but not limited to non destructive testing and coral

reef monitoring.

As an alternative, active techniques perform exceptionally well in areas

where no features can be readily detected. They are alternative solutions to ac-

commodate the absence of texture in the scene and ensure higher reliability on

matches. Beyond time-of-flight solutions that are suitable over larger distances,

or active laser scanners that provides very high resolution but require expensive

devices, structured lighting remains an affordable but robust strategy. The artifi-

cial texture generated by the projector produces sufficient salient image features

to allow dense 3D reconstruction. In addition, these techniques yield very good

accuracies in the final 3D reconstructed object. As mentioned before, our method

lies within the active category and therefore inherits the common limitations and

advantages of active techniques.

Another advantage of our single-shot method compare to the stereoscopy,

as one of the main passive techniques, is that since the projector constantly sends

a unique pattern and the pattern does not change over time, there is no need to

synchronize the camera and the projector. Contrary to our method, in stereoscopy
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or any multi-camera setup, all cameras must be synchronized otherwise they can

not be applied to dynamic scenes.

The advantage compared with multiple-shot structured light techniques,

which require multiple patterns to be projected, is that our method permits moving

surfaces to be measured. However, since the codification must be condensed in a

unique pattern, the spatial resolution is lower. Moreover, local smoothness of the

measuring surface is assumed in order to correctly decode the pixel neighborhoods.

Since this local smoothness is not always accomplished, errors in the decoding stage

can arise producing errors in the 3D measurements.

In our method, when projecting dots (color patches), their mass centers

must be located and if a dot appears only partially in the image, it would be hard

to accurately locate its mass center. In addition, the size of projected dots has

direct impact on the final spatial resolution of reconstructed object; the smaller

the dots, the better the resolution. However, decreasing the size of color dots can

complicate the process of identification of these dots. One way of overcoming this

issue is to use square dots and extract the corners of color patches instead of their

mass centers as we used in our last experiment (see the yellow buoy experiment).

The depth per pixel used in the pseudocode pattern is also an important

parameter. The noisier the application environment, the smaller the number of

colors used should be. When increasing the number of colors, differentiating the

colors becomes more difficult. Therefore, the three color combinations used in our

experiments are the most robust against noise. Note that two colors could not cre-
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ate a large enough unique number of subwindows in our pseudocode pattern. Also,

choosing colors with higher contrast among each other and against the underwater

object will increase the chance of their detection in the images. In most cases,

the read colors does not usually completely match with the projected ones due to

the non-linearities of the light spectrum of the projector, the spectral response of

the cameras, and the non-uniform albedo of the measuring surface. In order to

overcome this problem, a full colorimetric calibration procedure might need to be

considered which can be done using color calibration targets. These targets feature

different swatches with various shades of colors that can be used to establish the

transformation between the recorded colors by the camera and the original ones.

We demonstrated the accuracy of this new method with a number of ex-

perimental results in both synthetic and real data collected in a controlled lab

environment. In addition, we characterized the performance of the new method

through a sensitivity analysis for different parameters of our suggested model.

Note that our method, as most structured-light techniques, only produces

partial 3D views of the scene and in order to retrieve a complete 3D model of

the scene, it is necessary to merge several 3D views together. If there is sufficient

overlap between the partial 3D views, they can be fit together to build a single,

complete shape model. This process involves solving two important problems; reg-

istration and integration of multiple partial 3D views. In each given direction,

only the front part of the object is visible and the other sides are not visible or are

partially visible. Either the object or the sensor has to be moved to view the other
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sides of the object. The registration with respect to a common coordinate system

involves finding the transformation parameters for transforming the different ref-

erence coordinate systems to the common coordinate system. After registration

the partial models will need to be integrated together to obtain a single complete

3D model.

5.2 Future work

There are many further directions beyond this work. One avenue is to ex-

tend this method to the case where both camera and the projector are in the air

while the object is underwater. This would be the ideal case for non destruc-

tive testing and non invasive measurement of underwater objects since neither the

camera nor the projector touch the water. Similar to the presented method in

this thesis, at first the water surface needs to be estimated followed by underwa-

ter object reconstruction. The same camera-projector calibration method can be

utilized to estimate both intrinsic and extrinsic parameters of the camera and the

projector. Also, patterns used in single shot techniques should be used to be able

to handle the dynamic nature of water surface. In this case, for each ray emitted

from the projector, there would be two possible recorded rays in the camera; one

reflected from the water surface and one reflected from the underwater object.

The latter refracts while entering and exiting water. The reflected rays from water

surface can be used in standard structured light formulation to estimate the water

surface. Once the water surface is estimated, using camera-projector calibration

parameters, one can determine the points where the emitted ray from projector
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enters into and exits from water. These two points along with the point where the

ray hits the underwater object construct a triangle. By solving for this triangle,

one can calculate the object coordinates.

D = Bw sin(ψwp )

sin(ψwc + ψwp )
(41)

The main challenge in this setup is to differentiate between the reflected rays

from water surface and reflected rays from underwater object. Since polarization

cameras can take simultaneous images of the water surface and underwater objects,

they look promising for this purpose.
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Figure 36: Extension of the proposed method to the case where the camera and the
projector are outside water and the object is underwater.

Another avenue is to explore the combination of this method with under-

water image enhancement techniques in order to make it more suitable for envi-
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ronments with dominant scattering effects. Our method is designed to work in

pure sea water and clean ocean and it implicitly assumes that the light is neither

scattered nor absorbed by the water. This assumption, however, is violated in

ocean environments with dominant scattering effects. An optical image taken in

such a medium will be affected by significant loss of contrast and attenuation of

brightness. Further, this degradation increases exponentially with distance, mak-

ing it hard to capture images of the projected pattern. Thus, it is critical to take

into account the effects of scattering while applying the proposed system in such

media.

Notice that our single-shot technique can always be translated to a multiple-

shot technique by expressing the color pattern over a sequence of patterns in order

to achieve larger spatial resolution. One can change the size of the color dots in a

hierarchical manner in a sequence of shots and achieve a higher spatial resolution.

Alternatively, one can progressively shift the pattern horizontally and vertically to

increase the number of 3D reconstructed points. As such, advantage is taken of

the same uniquely coded feature points several times.

If the underwater object is static, the dynamic water surface can serve as

a tool to achieve higher spatial sampling resolution. In fact, in our experiment for

reconstructing the cylindrical object, the dynamic water surface helped us to sweep

the pseudocode pattern across the static object surface without even changing the

size of the color dots. In this way, each dot is not always projected on the same

point on the object. In addition, in each shot, different points might be extracted
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that accumulatively contribute to the final 3D reconstructed object.

Instead of using one camera for imaging in our setup, it is possible to

use two (or more) cameras along with one (or more) projector(s) in a multi-view

approach.This way, we can eliminate the need for calibration between the projector

and the cameras. This solution gives access to focusing, zooming and brightness

settings of the projector to adapt to various operating conditions and depth without

influencing the calibration of the acquisition system. This method can also help to

alleviate the deficiencies of passive techniques (such as stereo imaging) in dealing

with texture-less scenes.

Our method assumes that the water surface model in X and Y directions

are independent, so the model parameters in each direction can be estimated sep-

arately. This model can be extended to the a more general case where X and Y

coordinates are not independent. This way, the 3D shape of the water surface will

be estimated using X and Y coordinates of points at the same time.

While projector-camera systems provide high resolution images and detailed

information about underwater objects, their visibility is limited to distances of

no more than tens of meters even in clear water. As the turbidity of the water

increases, their visibility decrease substantially which results in their ineffectiveness

in many harbor waters and other highly turbid environments. Acoustic signals,

however, propagate in turbid water with little degradation. Thus, sonar imaging

becomes a natural choice for imaging in such environment. Unless a very expensive

sonar is used, bathymetry obtained using underwater sonar has lower cloud point
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density in comparison with the one obtained by an inexpensive optical camera. It

is expected that fusion of structured light and sonar images can provide enhanced

3D reconstruction performance as opposed to the single utilization of each sensing

modality, and would generally extend the operational range.
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